## Garswood Mathematics Curriculum Map 2023

At Garswood we have a bespoke approach to teaching mathematics using a combination of White Rose schemes, NCTEM and additional resources to ensure the most effective and carefully selected curriculum suits the individual needs and learning styles of the children. Each specific objective taught is split up into the areas below to ensure a step-by-step approach to mastering a concept and
becoming fluent in the factual knowledge and components surrounding this....
(24) \| R

- Number bonds, times tables, instant recall of facts, quick fire, associated facts, repeated calculations. Sticky knowledge at speed.

- The process and procedure needing to solve a calculation. Steps needed to be taken to reach the end goal. Logical and systematic.



## \| RNOW WW (hen., o. (composite) - strategies (Conditional)

- Facts and methods go together to make up the strategy. Normally requires some planning ahead by the child of how they are going to solve a problem.
(a) IknOw why... only at the very end of the unit. - (Conceptual)


## Mathematics Intent:

Maths is a journey and long-term goal, achieved through exploration, clarification, practice and application over time. At each stage of learning, children should be able to demonstrate a deep, conceptual understanding of the topic and be able to build on this over time. We are aiming for deep learning when components stick and can be transferred and applied in different concepts. And Deepest learning which can be transferred and applied in different contexts. The deep and deepest levels are what we are aiming for by teaching maths using a variety of resources including White Rose for sequencing and teaching resources, NCTEM for small steps to follow to embed mastery and a variety of self-styled and adapted resources to ensure declarative knowledge sticks. . At Garswood, we aim to develop children's oracy and utilise opportunities to extend children's vocabulary across the curriculum. We help every student develop as a whole person, fulfil their potential and contribute towards a future built upon the social and economic wellbeing of the individual, the local community and the wider world.

## Mathematics Implementation:

(36) The specific Year group maps outlines below are within our shared staff drives and available to all staff. This provides an amalgamation of White Rose small steps, NCTEM spines and Ready to Progress materials. One scheme alone would not cater for all learning, so we've combined a range to accommodate all needs and learning styles.
(8) The learning end points signify the learning we want children to have by the end of the block. The Composite NC knowledge show how each block ensure the statutory National Curriculum objectives are being covered in each block.
(3) The KIRFs show a half term specific objective to be taught ten minutes daily in a variety of ways to ensure this knowledge and associated links 'stick' with children and they become completely secure with this knowledge at their age-related ability. The Declarative Sticky Knowledge are the instant recall and associated facts we will repeat and reteach until we are confident children have a firm and secure understanding before moving onto composite concepts.
(3) The NCTEM Big Ideas are how to ensure that mastery is covered within the unit and the learning is embedded within the child's knowledge so they can use this to making connections between other mathematical areas with links below to Gareth Metcalfe materials and Mastery questioning to provide resources for consolidation and challenging the more able in each block.
(가 The map then moves onto the small steps of White Rose teaching in the White Rose Documents where each small step is hyperlinked to a separate document and broken down into key areas of reasoning, fluency and problem solving for each objective. This ensures children can accommodate the learning for that objective in a range of ways. With NRich links to pose specific challenging problems that often benefit from discussion of objectives for the more auditory learners.
(83) Concluding with the NCTEM key questions and STEM sentences that can be repeated in any block or unit such as true or false, spot the mistake, do then explain, what do you notice etc.... however, examples specific to this particular block are focused on under each heading.

## Mathematics Impact:

At Garswood, we ensure that all students are exposed to rich learning experiences both in and out of the classroom that aims to:

- Allow children to make quick recall of facts and procedures
- Develop a flexibility and fluidity to move between different contexts and representations of mathematics.
- Develop an ability to recognise relationships and make connections in mathematics.
- Overcome the vocabulary deficit by regularly being exposed to a range of maths vocabulary and ensuring the words are in context.
- Ensure the children feel prepared to use their knowledge of key mathematical concepts to contribute to the society around them and the wider world.
- A mathematical concept or skill has been mastered when a child can show it in multiple ways, using the mathematical language to explain their ideas, and can independently apply the concept to new problems in unfamiliar situations.
- Children demonstrate quick recall of facts and procedures as outlined in the half termly SIRF objectives. This includes the recollection of the times tables.
- Children show confidence in believing that they will achieve.
- Children show a high level of pride in the presentation and understanding of the work

|  | Declarative <br> Concepts, facts, representations, and vocabulary | Procedural <br> Methods can be applied quickly, accurately and using minimal steps | Conditional <br> Using declarative facts that have been rehearsed and combined with procedural methods |
| :---: | :---: | :---: | :---: |
| 릉흥 | numbers and number bonds to 10; concepts and vocabulary for talking about maths and mathematical patterns (size, weight, capacity, quantity, position, distance, time) | accurate counting, single digit addition and subtraction, halving doubling and sharing | (37) play games/sing songs <br> (34) answer questions <br> (43) talk about everyday objects <br> (4) solve problems using objects within continuous provision |
|  | (47) simple fractions <br> (37) basic arithmetic: the numbering system and its symbols, place value, conventions for expressions and equations, counting, addition, subtraction, equal sharing, doubling, balancing simple arithmetic equations, classifying numbers (odd, even, teens), inverse operations, estimation, numerical patterns (4) basic measurement: length; capacity; time; position; relative size, position, direction, motion, quantity <br> (34) Currency and coinage <br> (474sic geometry: 2D and 3D shapes, geometric patterns <br> (74) Categorical data <br> (74) Maths's facts: all number bonds within and between 20; key number bonds within and between 100, all multiplication facts for the 2,5 and 10 multiplication tables, key 'fraction facts' such as 'half of 6 is 3 ', key 'time facts' such as the number of minutes in an hour | (36) counting up and down in $1 \mathrm{~s}, 2,5 \mathrm{~s}, 10$ s and $1 / 2 \mathrm{~s}$; addition; subtraction, equal sharing, division and multiplication <br> (3) reading, writing of the digits/symbols, vocabulary and phrases required for working with simple fractions, arithmetic expressions and equations measuring length, capacity, time and monetary value presentation and layout of calculations using a ruler <br> (38) spotting and making geometric and numerical patterns <br> (43) construction and interpretation of categorical data: pictograms, charts, tables | (3) Complete written exercises <br> (4) Solve missing number problems <br> (4) Solve simple word problems involving arithmetic, money, time and fractions <br> (4) Solve data and measurement problems |
|  | (34) Arithmetic: enhanced knowledge of the code for number (to 1000s) including patterns and as-sociated rules for addition and subtraction of numbers, decimal numbers, place value, negative numbers, associative and distributive laws <br> (37) Maths's facts: all multiplication facts for the $3,4,6,7,8,9,11,12$ multiplication tables, decimal equivalents of key fractions <br> (43) equivalent fractions <br> (3) Formulae: Units of measurement conversion rules, formulae for perimeter and area <br> (a) Roman Numeral system and associated historical facts <br> (74) Geometry facts: right angles, acute and obtuse angles, right angles in whole and half turns, symmetry, triangle and quadrilateral classifications; horizontal, perpendicular, parallel and perpendicular lines <br> (3) Links between words/phrases in word problems and their corresponding operations in mathematics (e.g. 'spending' is associated with 'subtraction from an amount') <br> (37) The rules for multiplying and dividing by 10,100 and 1000 <br> (37) First quadrant grid coordinate principles | (36) counting up and down in multiples of $3,4,6,7,8,9,11,12,25,50,100,1000$, in tenths, in ones through to negative numbers <br> (43 Column addition and subtraction <br> (3) Mental addition and subtraction using patterns and rules of number <br> (36) Short division and multiplication <br> (37) Mental multiplication using derived facts <br> (37) Fractions: finding unit and non-unit fractions of amounts, common equivalents, addition, subtraction and comparison of fractions with the same denominator <br> (3) measure, compare, add, subtract: lengths, mass, capacity (all units of measurement) <br> (37) read, write and compare roman numerals <br> (3) Draw 2D and 3D shapes <br> (3) Interpret and present data <br> (3) Estimation and rounding <br> (4) First quadrant grid construction, plotting and translation of points | (374) Complete written exercises <br> (43) Solve missing number, length problems <br> (34) Solve word problems in-volving arithmetic, fractions, data handling, shape, length, mass and capacity |
|  | (348 Enhanced knowledge of the code for number: up to and within 1000000 , multiples, factors, decimals, prime number facts to 100 , composite numbers, indexation for square and cubed numbers <br> (3) Properties of linear sequences <br> (3) Conversion facts metric to imperial measurements and vice versa <br> (3) Key circle, quadrilateral and triangle facts and formulae (e.g. angles on a straight line sum to 180 degrees) <br> (3) Rules and principles governing order of operations | (74) Scaling, coordinate geometry in all four quadrants <br> (7) Division with remainders as fractions, decimals and where rounding is needed <br> (6) Fractions: conversion mixed to improper and vice versa, add, subtract and multiply <br> (3) Finding percentages of amounts <br> (44) Converting units of measurement <br> (7) Measurement of length, angles, area, perimeter, volume <br> (38) Use of order of operations <br> (3) Convert between fractions, decimals and percentages <br> (37) Linear algebra, basic trigonometry <br> (a) Long multiplication and division | (34) Complete written exercises <br> (43) Find missing quantities, lengths, angles <br> (47) Solve one- and two-step word problems involving all the operations <br> (4) Abstract and solve linear equations from word problems |

## Maths Curriculum Map - Nursery - EYFS




 connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.



|  | - To know routines <br> - Know how to count to <br> 3 in sequence <br> - Know how to count to show how many <br> - Know some basic shapes <br> - Know focused daily nursery rhymes | - To know routines using now and next <br> - To know counting and pointing out the last number <br> - Collecting objects <br> - To know finger rhymes to 5 <br> - To know and link numerals to amounts <br> - Know to sort and categorise objects <br> - Know simple positional language to find objects | - To follow instructions first, then <br> - Know positional language to describe a simple route around classroom <br> - Know numerals through play and blank tracks <br> - Experience real life maths problems during routines <br> - Comparing amounts <br> - Explore small 2D and 3D shape play | - To describe an event <br> - Know positional language to describe a simple route beyond the classroom <br> - Know simple prepositions <br> - Explore large 2D and 3D shape play <br> - Explore and know there are patterns around us | - Know the sequence of a simple story <br> - Know we can compare lengths <br> - Know we can compare weights <br> - Know language of first, then, next to talk about trip <br> - Know numeral amounts and count accurately in play | - Know the sequence stories in play <br> - Know positional language whilst on a journey around our community <br> - Know there are patterns in other cultures <br> - Know, copy and create simple patterns e.g. stripes <br> - Know and copy musical patterns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - Baseline: counting, sorting, basic shapes. <br> - Know we can count objects in sequence (forwards, backwards, using actions and through songs and games) <br> - Know focused nursery rhymes involving numbers and counting. <br> - Know how when we count objects, we point out the last object to show how many <br> - Introducing basic shapes in focus and play. Point out names of shapes circle, square, triangle. Use in play. Know some names. <br> - Know the routines in sequence. E.g. coat away, bag away, then play. | - Know when we count objects, pointing out the last number shows how many. <br> - Know a variety of number games and collect a specific number of items. <br> - Know finger numbers up to 5 . Know how to show me on fingers and singing number rhymes up to 5 . <br> - Know and link numerals and amounts throughout the setting. Show and point out in focus. Introduce independence in play. <br> - Know how to sort objects by size and capacity (for example vehicles or different sized containers) <br> - Know how to categorise toys and objects by colour. Know how to sort into different groups using this criteria. <br> - To know routines when asked questions like now and next. <br> - Know positional language to play hide and seek. Hide a toy and use language like 'under'. | - Know how to subitise up to 3 - play games to include 1, 2, 3 objects. <br> - Explore numerals and blank tracks through play and practitioner modelling. <br> - Introduce real world mathematical problems with numbers up to 5 during, snack time, group time etc. be very clear and use visuals to enable children to solve the simple question. E.g we have 5 children at the table. How many cups do we need? We have 3 children how many chairs do we need? Children know they can physically count the children / chairs and physically hand out the objects and count together. <br> - Know simple visual comparisons introducing more than and fewer than. Which table has more children? Who has fewer blocks? Use numbers within 5 and visually count out. Children know they must move an object to count. <br> - Exploring 2D and 3D shapes through play activities. Know they can make pictures and models with shapes and discuss shapes as we play. <br> - To know routines and follow a sequence first, then, next. <br> - Know positional language to plan a 'route' for example a route from the classroom to the hall. (Not a map - a journey) | - Know prepositions in real life contexts. Introduce in focus activities and then model and support in play. E.g. in, on, under. <br> - Know positional language to plan a 'route' / 'journey' to the trip on the farm. (Not a map) <br> - Know we can use loose parts for den making, talking about shapes and how their properties suit the purpose. <br> - To know a sequence of events like a trip or family event. <br> - Know and search for patterns around us. Use loose parts to copy simple patterns. | - Know we can compare lengths and weights (vegetables, farm animals). Long / short, big / small, heavy, light. Explore with hands. <br> - Use photographs from our trip to the farm to talk about real life events. Know to talk about what we did throughout the day using, 'first, then, next' language. <br> - Know we can link numerals to amounts accurately in both focused activities and opportunities in play. <br> - Know a sequence in a simple story first, then, next. | - Know there are simple patterns from different cultures e.g fabrics. Introduce vocabulary to describe patterns. <br> - Know and describe a pattern we see, copy a pattern and create their own patterns using a variety of materials <br> - Create musical patterns using clapping and stamping. <br> - Know and sequence a story or event in their play. <br> - Know positional language on a walk around our community. Make a journey plan. (No a map) |
|  | Developing a strong grou confidently, develop a d opportunities to build a secure base of knowledge develop their spatial reas in mathematics, look | terns and relationships, | nections, 'have a go', talk | lts and peers about | ey notice and not | ould be able to count in frequent and varied children will develop a portunities for children to e attitudes and interests id to make mistakes. |


|  | We will be learning to | Through activities such as | Throughout the year the children will learn |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | day - visual | - To count through songs, stories and in |  |  |
|  | Number zuzs |  |  | Shope, spoce meosures zuas |  |
|  | Comparison <br> - Compares two small groups of up to five objects, saying when there are the same number of objects in each group, e.g. You've got two, l've got two. Same! <br> Counting <br> - May enjoy counting verbally as far as they can go <br> - Points or touches (tags) each item, saying one number for each item, using the stable order of 1,2,3,4,5. <br> - Uses some number names and number language within play, and may show fascination with large numbers <br> - Begin to recognise numerals 0 to 10 <br> Cardinality <br> - Subitises one, two and three objects (without counting) <br> - Counts up to five items, recognising that the last number said represents the total counted so far (cardinal principle) <br> - Links numerals with amounts up to 5 and maybe beyond <br> - Explores using a range of their own marks and signs to which they ascribe mathematical meanings Composition <br> - Through play and exploration, beginning to learn that numbers are made up (composed) of smaller numbers <br> - Beginning to use understanding of number to solve practical problems in play and meaningful activities <br> - Beginning to recognise that each counting number is one more than the one before <br> - Separates a group of three or four objects in different ways, beginning to recognise that the total is still the same |  |  | Spatial Awareness <br> - Responds to and uses language of position and direction <br> - Predicts, moves and rotates objects to fit the space or create the shape they would like <br> Shape <br> - Chooses items based on their shape which are appropriate for the child's purpose <br> - Responds to both informal language and common shape names <br> - Shows awareness of shape similarities and differences between objects <br> - Enjoys partitioning and combining shapes to make new shapes with 2D and 3D shapes <br> - Attempts to create arches and enclosures when building, using trial and improvement to select blocks <br> Pattern <br> - Creates their own spatial patterns showing some organisation or regularity |  |
|  | - Fast recognition of up to 3 objects, without having to count them individually ('subitising'). <br> - Recite numbers past 5. <br> - Say one number for each item in order: 1,2,3,4,5. <br> - Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle'). <br> - Show 'finger numbers' up to 5. <br> - Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 . <br> - Experiment with their own symbols and marks as well as numerals. <br> - Solve real world mathematical problems with numbers up to 5. |  | - Compare quantities using language: 'more than', 'fewer than'. <br> - Talk about and explore 2D and 3D shapes (for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: 'sides', 'corners'; 'straight', 'flat', 'round'. <br> - Understand position through words alone - for example, "The bag is under the table," - with no pointing. <br> - Describe a familiar route. <br> - Discuss routes and locations, using words like 'in front of' and 'behind'. <br> - Make comparisons between objects relating to size, length, weight and capacity. <br> - Select shapes appropriately: flat surfaces for building, a triangular prism for a roof etc. <br> - Combine shapes to make new ones - an arch, a bigger triangle etc. <br> - Talk about and identifies the patterns around them. For example: stripes on clothes, designs on rugs and wallpaper. Use informal language like 'pointy', 'spotty', 'blobs' etc. |  |  |

## Maths Curriculum Map - Reception - EYFS




 in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

## Counting Principles:

- The One-One Principle - I can count each object only once and say one number name for each object.
- The Stable Order Principle - When I count, I say the numbers in order. This order always stays the same.
- The Cardinal Principle - When I count the objects in a group, the last number I say tells me the total for the group.
- The Abstraction Principle - I can count anything. Even things that cannot be touched or seen.
- The Order-Irrelevance Principle - It doesn't matter which order I count a group of objects in, the total will be the same.

 Expected.

|  | Entry | $\cdots 3$ | 33 | $\Rightarrow 3$ | $\bigcirc 3$ | $\Rightarrow \text { End }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - To know practitioners, peers and the classroom environment and routines <br> - Explore the environment and know how to sort and match amounts and objects. <br> - Know how to compare size, mass and capacity <br> - Know patterns are around us and we can explore, make, repeat them | - Know how to represent, compare and compose 1, 2, 3 <br> - Know and have an awareness of number 4 5 <br> - Know positional language and simple shapes. <br> - Know how to represent numbers to 5. <br> - Know 1 more 1 less within 5. <br> - Know some shapes with 4 sides <br> - Know time linked to our daily routines | - Introducing zero - to know how zero is represented <br> - Know how to compare numbers to 5. <br> - Know the composition of 4 and 5 <br> - Know how to compare mass and capacity <br> - Know how to count to 6, 7, 8 <br> - Know how to combine 2 amounts <br> - Know how to make pairs | - Know how to measure length and height <br> - Know how to sequence time <br> - Know how to count to 9, <br> 10. <br> - Know how to compare numbers up to 10. <br> - Know number bonds to ten on ten frame. <br> - Know number bonds to 10 part whole model. <br> - Know spatial awareness when building with shapes and knowing which stack, roll etc... <br> - Know some simple 3D shapes <br> - Know how to recognise and repeat patterns | - Know how to verbally count to 20 and beyond. <br> - Know how to build numbers beyond 10 <br> - Know how to counting patterns beyond 10 <br> - Know spatial reasoning when rotating to fit a space <br> - Know how to match, rotate, manipulate <br> - Know how we add more and take away <br> - Know spatial reasoning when combining shapes to make new shapes. <br> - Know how to compose and decompose to make new shapes and pictures | - Know the meaning of doubling <br> - Know the meaning of sharing and grouping <br> - Know odds and evens within 10 <br> - Know spatial reasoning when building and using positional language to create models <br> - Know how to visualise and build accurately <br> - Deepening understanding of patterns and relationships <br> - Know spatial reasoning in the creation of more complex patterns and transient art. <br> - Know how to create a simple maps |and tidy areas. Adultsto model and teachchildren.

*Know how to match, sort and compare amounts. Know how to explore the maths area and match and sort numicon, blocks, counters. Know how to sort objects based on attributes throughout the provision. Know to consider same and different. Know line up time activities.
*Know to sort collections of objects into sets. Know to compare more, fewer the same. *Know how to compare size, mass and capacity. Children know to compare heights of each other by standing together. Children know to compare weights of objects by holding them and using a balance.

Children know to compare capacity by filling different sixed containers. Activities to continue in Continuous provision and time utilising all resources objects
*They know how to match the number names we say to numerals and quantities.
*They know how to count to 3 objects in different arrangements by touching each object as they count and recognise that the final number they say names the quantity of the set. *They know how to use their own marking making to represent 1,2 and 3 , for example recording their score in a game. *They know and understand as *They know and understand as we co know counting bach is 1 les They know counting back is 1 les Support children to do this in Support children to do this in play and compare numbers. They know and understand That numbers are made up of smaller numbers. Know and explore the composition of 2 and 3. Children may explore the composition of larger numbers. ${ }^{\star}$ Know about circles and triangles. That circles have 1 curved side and triangles have 3 straight sides. They begin to recognise these shapes in everyday objects. They begin to build their own circles and triangles. They explore different sizes, side lengths and orientations.
*Know positional language to describe where they are. They build life-sized journeys and travel through them. They represent their journeys using simple models, drawings or maps.
*Know how to count on and back to 4 and count, subitise and make collections of 4 objects. Know how to match numeral to quantity and compare
quantities and are able to say which have more or fewer. They mark make to represent 4. Know and subitise to 5 and count forwards and backwards accurately using the counting principles. They represent 5 objects on 5 frames and know if full it is 5 . Focus on $5^{\text {th }}$ birthdays and 5 number rhymes.

Know the number name 'zero' or O can represent 'nothing' or 'all gone'. Sing number songs that count back e.g. 10 green bottles, 5 elephants. Understand O is less than 1.
*Know how to compare numbers to 5 understanding that quantities can be more than, less than or the same. Support children to compare quantities in their play.
*Know that numbers are made up of smaller numbers. E.g. 4 is 1 and 3. Encourage subitising and show children that numbers can be made up of 2 parts or more than 2 parts. *Know by holding items we can compare weight. Know to use a balance to check predications. Know language heavier, heavier than, heaviest and lighter, lighter than and lightest. Address misconception that heavier is always bigger. *Revisit capacity and know language empty, half full, full, nearly empty. Explore with water, sand, rice and beans. Use different sized and shaped containers. Know language tall, thin, narrow, wide, shallow. Pour and compare. Use smaller containers to count e.g. cups or ladles.
*Continue to represent the counting principle with 6,7 , 8. Arrange smaller numbers in groups to enable children to subitise and see how 6, 7, 8 are made up. E.g. 8 is 4 and 4. Know how to order and compare numbers noticing more and less patterns as we count on and back.
*Know language to compare length and height. Use language specific to length (longer, shorter), height (taller, shorter), breadth (wider, narrower). Begin to use nonstandard units of measure to compare. *Know how to sequence time using language such as now, before, later, soon, after, then, next. To talk about each week in terms of today, yesterday, tomorrow. To understand things, they are looking forward to and learn about time through stories and vegetable growth. *Know the counting principles with 9 and 10, forwards and backwards.

They arrange and represent 9 and 10 in different ways using skills of subitising and exploring composition. E.g. 9 is 3,3 , 3. A ten frame is full when it has 10. They have 10 fingers.
*To know that a set of items can have more, fewer or the same than other sets. Compare 2 then 3 or more quantities. *Know bonds to 10 using real objects or ten frames or 10-hole egg boxes. Discuss how many and how many more to make 10 ?
*Know how to manipulate shapes in play. Which shapes stack or roll? Why? Model and encouraging building with 3D shapes.

Discuss names as we model. Discuss similarities and differences and sort shapes.

Know to use resources (E.g. ten frames, blocks, numicon, bead strings,
loose parts, base 10) to
build and identify
numbers of objects to 20.
Show children the numbers 1-9 repeat after
10. E.g. 1 and 10 is 11.
*Know to count on and back beyond 10. Show how we have 1 ten and 4 is 14 . Count on and back from different starting points. Say what comes before and after. Challenge to find numbers on a 100 square.

* Know how to use puzzles and jigsaws. Know how to select and rotate to fit spaces.
*Know and tell stories
using first, then, now and talk about adding more. Represent number stories using ten frames, fingers and number lines.
*Know and tell stories using first, then, now model and talk about taking away. Encourage counting out, taking away and subitising what's left. Represent number stories using ten frames, fingers and number lines.
- *Know shapes can be combined and separated to make new shapes. Explore and investigate how many different shapes we can make
*Know that double means 'twice as many'. Build doubles using objects and maths resources. Use mirrors to explore symmetry. Build up doubles in patterns. *Know to share equally and unequally. Explain they are not shared fairly. How to we resolve when things are not shared fairly?
*Know that some objects can be shared or grouped fairly in groups of 2. Some won't. Some objects can be grouped in pairs. Model odd and even structures and pair wise patterns on the 10 frame.
*Know positional language when creating models. Provide verbal instructions to build. Play barrier games to build the same. Is it the same? *Know problem solving
linked to real life problems and stories. Follow up and support in play. Encourage children to consider different starting points and outcomes.
*Know how to use a range of resources throughout the classroom to model and challenge children to create patterns ABBBC and repeat. More complex transient art.
- *Know how to make maps and plans to

|  | where appropriate throughout the provision. <br> *Know patterns and explore patterns. Model pattern making using different resources throughout the classroom. Encourage children to explore and create. Children know how to create $A B$ patterns. | * Know how to use 5 frames to represent numbers and predict how many there will be if they add 1 more or 1 less. Show links with counting forwards and 1 more and counting backwards and 1 less. <br> *Know rectangles and squares have 4 straight sides and 4 corners. Recognise these shapes within the classroom and make them. Explore a variety of sizes and orientations. <br> - *Know about night and day and order routines. Know and use language to describe when events happen. E.g. day, night. Measure time in simple ways e.g. counting sleeps or using sand timers. | *Know that combining 2 groups we see how many altogether. Use in context using real objects. <br> Encourage subitising and counting in ones. <br> - *Build on pair work matching pairs by arranging small quantities in pairs and know sometimes there is an odd one or one left out. Play matching pairs games like snap and memory games. | - *Know AB pattern. Know and explore ABB, BAA, AABB, BBAAA. <br> Ensure each model has 3 full units of repeat. Model patterns in straight lines and around the edge of shapes. Link to transient art. |  | smaller shapes from a give shape. | represent things in relation to others. Make maps and plans of the models they have built indoors and out. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | more, less, add, take away, greater, fewer, tall, taller, big, little, middle size, small, medium, long, short, tiny, large, centimetres, thickest, enormous, heavy, heavier, light, lightest, full, empty, half full, enough, next to, between, behind, under, in front, over, high, on top, up, in, on, first, second, third, fourth, far away, today, tomorrow, day after, Friday, Saturday, early, evening, pm, morning, yesterday, night, calendar, 1p, pounds, enough, bill, change, amount, costs, circles, hexagons, square, rectangle, triangle, diamond, sphere, sides, corners, flat, curved, pattern. |  |  |  | Mathematics to be supported though rhymes, stories both during focused activities and in play. |  |  |
| $\stackrel{0}{8}$ |  |  |  |  | The maths area to be available at all times. Children to have access to mathematical opportunities in all areas of learning, inside, outside and during Forest School sessions. Staff to use opportunities to focus on individuals who require further support. Staff to be aware of individuals unique learning needs and interests. Interventions to take place during play and also separate focused time. |  |  |
| $\begin{aligned} & \text { 을 } \\ & \text { 를 을 } \\ & 0 \\ & 0 ㅇ ㅡ ㄴ ~ \end{aligned}$ | (34) The One-One Principle - I can count each object only once and say one number name for each object. <br> (37) The Stable Order Principle - When I count, I say the numbers in order. This order always stays the same. <br> (3) The Cardinal Principle - When I count the objects in a group, the last number I say tells me the total for the group. <br> (34) The Abstraction Principle - I can count anything. Even things that cannot be touched or seen. <br> The Order-Irrelevance Principle - It doesn't matter which order I count a group of objects in, the total will be the same. |  |  |  |  |  |  |
|  | Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes. |  |  |  |  |  |  |



Maths Curriculum Map - Year 1 (Autumn)



## Maths Curriculum Map - Year 1 (Spring)



| Links | Teaching for Mastery Year 1 ISee Reasoning - GM | Teaching for Mastery Year 1 <br> I See Reasoning - GM | Teaching for Mastery Year 1 I See Reasoning - GM | Teaching for Mastery <br> Year 1 <br> I See Reasoning - GM | Teaching for Mastery <br> Year 1 <br> I See Reasoning - GM |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mental Recall: <br> count to and across 40 , forwards and backwards, beginning with 0 or 1 , or from any given number count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number Within 10: Count objects <br> Within 10: Counting forwards <br> Within 10: count backwards <br> Within 10: Counting forwards <br> and backwards <br> Within 20: Count and write <br> numbers to 20 <br> Within 50: Numbers to 50 <br> Counting to 100 <br> count forwards from 80 to 110 <br> count backwards from 105 | Equivalence: <br> read, write and interpret mathematical statements involving addition ( + ), subtraction ( - ) and equals ( $=$ ) signs <br> Within 10: Addition symbol <br> Within 10: How many left? (2) <br> (Introducing the subtraction symbol) <br> Within 10: Comparing statements (1) <br> Within 10: Comparing statements (2) <br> Within 20: Compare number sentences <br> $\square$ Use the vocabulary add, subtract, minus, equals, is the same value as, total, more than, fewer/less than. <br> [ Explain that things on both sides of the equals sign have the same value [ Know that the 'total' can be presented on either side of the equals sign <br> ] Complete 'empty box' number sentence | More or less: <br> Given a number, identify one more and one less Within 10: Count one more <br> Within 10: count one less <br> Within 20: Count one more and one less <br> Within 50: One more one less <br> There are twenty-nine beads in this pot. I am putting one more bead in the pot. How many are in there now? How did you know? How can you check? <br> This time there are forty beads in the pot. Itake out one bead. How many beads are left in the pot? How did you know? How can you check? <br> Start with a different number of beads in the pot. Ask your partner to put another bead in or take one out and then say how many there are in the pot. How will you know if your partner is right? And use the language of: equal to, more than, less than (fewer), most, least <br> Within 10: One-to-one correspondence <br> Within 10: Comparing objects <br> Within 10: Using $<$, > and = <br> Within 10: Comparing numbers <br> Within 20: Compare numbers <br> Within 20: Compare groups of objects <br> Within 50: Compare objects within 50 <br> Within 50: Compare numbers within 50 <br> Compare numbers (1) <br> Compare numbers (2) | Length and Height: <br> compare, describe and solve practical problems for lengths and heights (e.g. long/short, longer/shorter, tall/short, double/half) <br> compare lengths and heights <br> Use their experience of standard units to make realistic estimates, answering questions such as: <br> $\square$ Is the table taller or shorter than a metre? <br> $\square$ Is this doll taller or shorter than one of the class rulers? <br> measure and begin to record lengths and heights <br> Measure length (1) <br> Measure length (2) <br> Use standard units to measure and compare objects. For example, they place metre sticks end-to-end to find out how much wider the hall is than the classroom. | Weight: <br> problems for mass or weight (e.g. heavy/light, heavier than, lighter than <br> Introduce weight and mass Compare mass <br> Use their experience of standard units to make realistic estimates, answering questions such as: $\square$ Which of these things do you think will weigh less than a kilogram? <br> There are five cars in one side of the scales. The scales are balanced. What could the doll weigh? measure and begin to record the following mass/weight |
| Nrich links | 4 Z | 12 | One more one less <br> I'm giving each of you a strip of card with some numbers on [five numbers at random from 0 to 30]. Point to the number which is worth most. Now point to the number which is worth least. | 123 |  |
|  | Spot the mistake: <br> 5,6,8,9 <br> What is wrong with this sequence of numbers? <br> True or False? <br> I start at 2 and count in twos. I <br> will say 9 <br> What comes next? $10+1=11,11+1=12,12+1=13$ <br> Do, then explain <br> Look at the objects (in a collection). Are there more of one type than another? <br> How can you find out? | Convince me In my head I have two odd numbers with a difference of 2 . What could they be? Convince me <br> Missing numbers Fill in the missing numbers (using a range of practical resources to support) <br> $12+=1920-=3$ <br> Fact families Which four number sentences link these numbers? 12, 15, 3 <br> What else do you know? If you know; 12-9 = 3 what other facts do you know? <br> Missing symbols Write the missing symbols ( $+-\Rightarrow$ ) in these number sentences: $17320 \quad 18202$ <br> Working backwards Through practical games on number tracks and lines ask questions such as "where have you landed?" and "what numbers would you need to throw to land on other given numbers?" What do you notice? <br> 11-1=10 11-10=1 <br> Can you make up some other number sentences like this involving 3 different numbers? <br> Continue the pattern <br> $10+8=18 \quad 11+7=18$ <br> Can you make up a similar pattern for the number 17? How would this pattern look if it included subtraction? <br> Missing numbers <br> $\begin{array}{ll}9+=10 & 10-=9\end{array}$ <br> number goes in the missing box? <br> Making an estimate <br> Pick (from a selection of number sentences) the ones where the answer is 8 or 9 . <br> Is it true that? <br> Is it true that $3+4=4+3$ ? | Spot the mistake: <br> 5,6,8,9 <br> What is wrong with this sequence of numbers? <br> True or False? <br> I start at 2 and count in twos. I will say 9 <br> What comes next? $10+1=11,11+1=12,12+1=13$ <br> Do, then explain <br> Look at the objects (in a collection). <br> Are there more of one type than another? <br> How can you find out? | Top tips <br> How do you know that this (object) is heavier / longer / taller than this one? <br> Explain how you know <br> Application <br> (Can be practical) <br> Which two pieces of string are the same <br> length as this book? <br> Possibilities <br> Ella has two silver coins. <br> How much money might she have? <br> Explain thinking <br> Ask pupils to reason and make statements about to the order of daily routines in school e.g. daily timetable <br> e.g. we go to PE after we go to lunch. Is this true or false? <br> What do we do before break time? etc. | Top tips <br> How do you know that this (object) is heavier / longer / taller than this one? Explain how you know Application (Can be practical) Which two pieces of string are the same length as this book? <br> Possibilities <br> Ella has two silver coins. How much money might she have? Explain thinking Ask pupils to reason and make statements about to the order of daily routines in school e.g. daily timetable e.g. we go to PE after we go to lunch. Is this true or false? What do we do before break time? |

## Maths Curriculum Map - Year 1 (Summer)



| Links | Teaching for Mastery Y1 <br> I See Reasoning - GM | Teaching for Mastery Y1 <br> I See Reasoning - GM | Teaching for Mastery Y1 <br> I See Reasoning - GM | Teaching for Mastery Y1 <br> I See Reasoning - GM | Teaching for Mastery Y1 <br> I See Reasoning - GM | Teaching for Mastery Y1 <br> I See Reasoning - GM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mental Calculations: <br> Counting in fives and tens Within 50: Count in 2s <br> Within 50: count in 5 s <br> Within 50: Count in 10s <br> Count groups of 10 each of $2 p, 5 p$ and $10 p$ coins <br> solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of a teacher <br> Derive and Recall: <br> Make equal groups <br> Add equal groups <br> Make arrays <br> Make doubles <br> Make equal groups - grouping <br> Sharing equally <br> Explore multiplication and division using apparatus and model how to represent as an array. <br> Problem solving: <br> Ben had 5 football stickers. His friend Tom gave him 5 more, how many does he have altogether? Share 12 sweets between two children. How many do they each have? <br> below. children pictures or groups of objects as below. Ask questions such as <br> "How many biscuits are they altogether? "How many cherries are there altogether?" Observe how children count the objects. Do they count in twos, fives etc or do they count in ones? count in twos, fives etc or do they count in ones? | Fractions: <br> recognise, find and name a half as one of two equal parts of an object, shape or quantity <br> Find a half (1) <br> Find a half (2) <br> Shade one half of each shape. Can you find different ways to do this? <br> Here is a set of pencils. How many is half of the set? <br> recognise, find and name a quarter as one of four equal parts of an object, shape or quantity <br> Find a quarter (1) <br> Find a quarter (2) <br> Four children share 12 strawberries into equal parts. <br> How many strawberries will each child get? <br> Colour half of each whole shape: | Position and Direction: describe position, direction and movement, including whole, half, quarter and threequarter turns Describe turns <br> Describe positions (1) <br> Describe positions (2) <br> Look at this map - Desi starts at the bottom. Desi's house is the 2nd on the left. <br> Tick $(\boldsymbol{V})$ it. <br> Look at the shelves with the objects. <br> The cups are in the middle row and third from the right. They are below the straws. <br> How could you describe the positions of other things on the shelves? <br> I am thinking of an item. You may ask questions but I can only answer yes or no. You could guess the item in four questions, what questions could they be? | Place Value: <br> Year 2 objective) Begin to recognise the place value of each digit in a two-digit number (tens, ones) <br> Within 10: Ordering objects <br> Within 10: Ordering numbers <br> Within 10: ordinal numbers <br> Within 20: Tens and ones <br> Within 20: Order groups of objects <br> Within 20: Order numbers <br> Within 50: Tens and ones <br> Within 50: Order numbers within 50 <br> Partition numbers <br> Order numbers <br> Look at these numbers. <br> 371245607227 <br> Identify, represent, estimate: Which of these numbers is the largest? Which of these numbers are below 20? Identify and represent numbers using objects and pictorial representations including the number line Within 10: representing objects Within 10: counting and representing numbers Within 10: The number line Within 50: represent numbers to 50 <br> I'm giving each of you a strip of card with some numbers on [five numbers at random from 0 to 30]. Make these numbers using tens and ones apparatus and put them in order Why have you put this number there? | Money: <br> recognise and know the value of different denominations of coins and notes <br> Recognising coins <br> Recognising notes <br> Counting in coins <br> Distinguish coins by sorting them and start to understand their value. They begin to recognise that some coins have a greater value than others, and will buy more: for example, $2 p$ is worth more than $1 p ; 5 p$ is worth more than $2 p$; $£ 2$ is worth more than s1. They play money games and collect 1 p or $2 p$ coins to the value of 10p and begin to count up 'how much this is altogether'. They extend their activities in the classroom shop, paying for items that cost $1 p, 3 p, 5 p, 7 p$ or $9 p$ using only $2 p$ coins, and receiving the appropriate amount of change in $1 p$ coins. They use coins to help them to respond to questions such as: <br> $\square$ Michael had $£$. He spent $£ 3$. How much did he have left? <br> $\square$ Rosie had a 10p coin. She spent 3p. How much change did she get? <br> How much altogether is 1 p and 2 p and 5 p ? <br> $\square$ Sunita spent $5 p$ and $6 p$ on toffees. What <br> did she pay altogether? <br> $\square$ Chews cost $2 p$ each. How much do three chews cost? <br> $\square$ An apple costs 12p. Which two coins would pay for it? What combinations of 3 coins would pay for it? | Time: <br> sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening <br> Before and after <br> Continue to develop the concept of time in terms of time passing and sequencing events in familiar story or day-to-day routines. <br> They use terms such as morning, afternoon and evening, yesterday and tomorrow. They learn to order the days of the week and learn that weekend days are Saturday and Sunday. <br> They listen to stories and rhymes about time, such as The Very Hungry Caterpillar or The Bad-Tempered Ladybird by Eric Carle, Monster Monday by Susanna Gretz or Hard Boiled Legs by Michael Rosen and Quentin Blake. <br> recognise and use language relating to dates, including days of the week, weeks, months and years <br> Dates <br> Order the months of the year and make a 12-page classroom calendar with pictures of each month, writing significant events underneath, such as Diwali, Pancake Day or Midsummer's Day, or the dates of their birthdays. |
| Nrich <br> links | 12 | 12 |  | $\underline{1} 3$ | objects and pictorial representations, and missing number problems | 123 |
|  | Making links <br> If one teddy has two apples, how many apples will three teddies have? Here are 10 lego people If 2 people fit into the train carriage, how many carriages do we need? Practical If we put two pencils in each pencil pot how many pencils will we need? <br> Spot the mistake <br> Use a puppet to count but make some deliberate mistakes. <br> e.g. 2456 <br> 10986 <br> See if the pupils can spot the deliberate mistake and correct the puppet | What do you notice? <br> Choose a number of counters. Place them onto 2 plates so that there is the same number on each half. <br> When can you do this and when can't you? <br> What do you notice? <br> True or false? <br> Sharing 8 apples between 4 children means each child has 1 apple. | What's the same, what's different? <br> Find a rectangle and a triangle in this set of shapes. Tell me one thing that's the same about them. Tell me one thing that is different about them. <br> Visualising Put some shapes in a bag. Find me a shape that has more than three edges. <br> True or false? <br> All 2-D shapes have at least 4 sides Other possibilities <br> Can you find shapes that can go with the set with this label? <br> "Have straight sides" | Spot the mistake: <br> 5,6,8,9 <br> What is wrong with this sequence of numbers? <br> True or False? <br> I start at 2 and count in twos. I will say 9 <br> What comes next? $10+1=11,11+1=12,12+1=13$ <br> Do, then explain Look at the objects (in a collection). Are there more of one type than another? How can you find out? | Top tips How do you know that this (object) is heavier / longer / taller than this one? <br> Explain how you know <br> Application (Can be practical) <br> Which two pieces of string are the same length as this book? <br> Possibilities <br> Ella has two silver coins. <br> How much money might she have? <br> Explain thinking <br> Ask pupils to reason and make statements about to the order of daily routines in school e.g. daily timetable e.g. we go to PE after we go to lunch. Is this true or false? What do we do before break time? etc. | Top tips How do you know that this (object) is heavier / longer / taller than this one? <br> Explain how you know <br> Application (Can be practical) <br> Which two pieces of string are the same <br> length as this book? <br> Possibilities <br> Ella has two silver coins. <br> How much money might she have? <br> Explain thinking <br> Ask pupils to reason and make statements about to the order of daily routines in school e.g. daily timetable <br> e.g. we go to PE after we go to lunch. Is this true or false? <br> What do we do before break time? etc. |

## Maths Curriculum Map - Year 2 (Autumn)

| Num |  |  | Geometry |  | Measure |  | Statistics |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Block 1 <br> Week 1-4 |  |  | $\begin{gathered} \text { Block } 2 \\ \text { Week 5-9 } \end{gathered}$ |  |  |  | $\begin{gathered} \text { Block } 3 \\ \text { Week } 10-12 \end{gathered}$ |  |
|  | Place Value |  |  | Addition and Subtraction |  |  |  |  | Shape |
| KIRFs | To know all the number bonds to 20 |  |  |  | To know how to count, read and write numerals to 100 |  |  |  |  |
| vocab | To know how to answer these questions in any order, including missing number questions$\text { e.g. } 19+\bigcirc=20 \text { or } 20-\bigcirc=8$ |  | What do I add to 5 to make 20? <br> What is 20 take away 6? <br> What is 3 less than 20? <br> How many more than 16 is 20 ? |  | twenty eight $=28$ <br> thirty seven $=37$ <br> ninety nine $=99$ |  |  | 28, 29, 31 what number is missing? $31,24,36,38$ - what needs to be changed in this pattern and why? |  |
| Declara |  | - number bonds [up to 12, and pairs with a total of 20] <br> - add and subtract numbers mentally, including: a two-digit number and ones [which includes bridging the tens]; a two digit number and tens; two two digit numbers; adding three one digit numbers |  |  | - add and subtract 10 and small multiples of 10 from any given number <br> - partitioning a number in different ways to support addition and subtraction [taken from Place Value] <br> use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 |  |  |  |  |
|  | Count objects to 100 and read and write numbers in numerals and words. <br> -Represent numbers to 100. <br> -Tens and ones with a part whole model. <br> -Tens and ones using addition. <br> - Use a place value chart. <br> $\bullet$ - $\quad$ ompare objects. <br> -Compare numbers. <br> -Order objects and numbers. <br> $\bullet$ Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s. |  |  | Fact families -Addition and subtraction bonds to 20. <br> $\bullet$-Check calculations. <br> -Compare number sentences. <br> -Related facts. <br> -Bonds to 100 (tens). <br> -Add and subtract is. <br> -10 more and 10 less. <br> -Add and subtract 10 s. <br> -Add a 2 -digit and 1-digit number -crossing ten. <br> - Subtract a 1 -digit number from a 2-digit number -crossing 10. <br> -Add two 2-digit numbers -not crossing ten -add ones and add tens. <br> -Add two 2-digit numbers -crossing ten -add ones and add tens. <br> -Subtract a 2-digit number from a 2-digit number -not crossing ten. <br> - Subtract a 2-digit number from a 2-digit number -crossing ten -subtract ones and tens. <br> $\bullet$ Bonds to 100 (tens and ones). <br> -Add three 1-digit numbers. |  |  |  | Recognise 2D and 3D shapes. <br> -Count sides on 2D shapes. <br> -Count vertices on 2D shapes. <br> -Draw 2D shapes. <br> - Lines of symmetry. <br> - Sort 2D shapes. <br> -Make patterns with 2D shapes. <br> -Count faces on 3D shapes. <br> -Count edges on 3D shapes. <br> -Count vertices on 3D shapes. <br> -Sort 3D shapes. <br> $\bullet$-Make patterns with 3D shapes. |  |
|  | Read and write numbers to at least 100 in numerals and in words. $\bullet$ Recognise the place value of each digit in a two digit number (tens, ones) Identify, represent and estimate numbers using different representations including the number line. <br> -Compare and order numbers from 0 up to 100; use $<,>$ and $=$ signs. <br> -Use place value and number facts to solve problems. <br> $\cdot$ Count in steps of 2,3 and 5 from 0 , and in tens from any number, forward and backward. |  |  | Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100. <br> -Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers. <br> -Show that the addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. <br> -Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; applying their increasing knowledge of mental and written methods. <br> -Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. |  |  |  | Identify and de shapes, including symmetry in a -Identify and shapes, includi vertices and fa -Identify 2-D sh shapes, [for exa and a triangle -Compare and shapes and eve | ribe the properties of 2-D the number of sides and line rtical line. <br> cribe the properties of 3-D the number of edges, <br> pes on the surface of 3-D ple, a circle on a cylinder a pyramid]. rt common 2-D and 3-D day objects. |
|  | Digit, tens, ones, place value grid, partition, more, fewer, fewest, greatest, smallest, partition. |  |  | fact family, number sentence, number bond, 10 more, 10 less, total, tens ones, subtract, difference, bar model, represent, how many are left?, in total, taken away, subtract, count backwards, How many more?, How many fewer?, difference. |  |  |  | Quadrilateral, vertex, vertice symmetrical, | lygon, pentagon, hexagon, ne of symmetry, gon, edge, prism. |


|  | The Big Ideas <br> The position (place) of a digit in a number determines its value. Hence the term place value | The Big Ideas <br> Understanding that addition of two or more numbers can be done in any order is important to support children's fluency. When adding two numbers it can be more efficient to put the larger number first. For example, given $3+8$ it is easier to calculate $8+3$. <br> When adding three or more numbers it is helpful to look for pairs of numbers that are easy to add. For example, given $5+8+2$ it is easier to add $8+2$ first than to begin with $5+8$. <br> Undertanding the importance of the equals sign meaning 'equivalent to' (i.e. that $6+4=10,10=6+4$ and $5+5=6+4$ are all valid uses of the equals sign) is crucial for later work in algebra. Empty box problems can support the development of this key idea. Correct use of the equals sign should be reinforced at all times. Altering where the equals sign is placed develops fluency and flexibility. |  | The Big Ideas <br> It is not uncommon for pupis to say that this is $\alpha$ square and this is not , or that something like this s s a triangle. <br> It is important for pupils to know what the properties are that make up certain shapes, and for them not to just learn the names of typical protolooking shapes. <br> lot <br> It is helpfut to think about non examples of shapes. For example, why this is not a triangle: <br> Recognising patter and generalising structures and relationships are key elements for laying the foundations for later work in algebra. |
| :---: | :---: | :---: | :---: | :---: |
| Links | Teaching for Mastery Year 2 <br> I See Reasoning - GM | $\frac{\text { Teaching for Mastery Year } 2}{\text { I See Reasoning - GM }}$ |  | Teaching for Mastery Year 2 <br> I See Reasoning - GM |
|  | Counting: <br> count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward <br> Counting in $255 s$ and 10 s <br> Counting in 3 s <br> Use their knowledge of counting on from or back to zero in steps of $2,3,5$ and 10 to answer multiplication and division questions such as $7 \times 2$ and $40 \div 5$. They understand that one way to work out $40 \div 5$, for example, is to find out how many fives make 40 . They know that this can be done by counting forwards in fives from zero or backwards in fives from 40. Write the missing numbers in each of these patterns. More or less: count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward and find ten more and ten less <br> e.g. Give me the number 10 less than 93. | Mental Recall: <br> recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 <br> Within 20: Fact families <br> Within 20: Compare number sentences <br> Related facts <br> Bonds to 100 (tens) <br> Bonds to 100 (tens and ones) <br> Extend their knowledge and use of number facts, and use partitioning and number bonds to add and subtract numbers mentally to answer questions such as <br> $60-\square=52$ or $35=20+\square$. <br> They make jottings where appropriate to support their thinking. Answer problems such as: <br> Look at this number sentence: $\square+\square=20$. What could the two missing numbers be? What else? Can you tell me all the pairs of numbers that make 20 ? <br> Equivalence: <br> show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot <br> Understand that addition can be done in any order and use this to solve an addition by rearranging the numbers to simplify the operation. They need to understand that two numbers can be taken away from each other but that the answers will not be the same. |  | Shape: <br> identify and describe the properties of 2D shapes, including the number of sides and symmetry in a vertical line <br> Recognise 2D and 3D shapes <br> Count sides on 2D shapes <br> Count vertices on 2D shapes <br> Draw 2D shapes <br> Lines of symmetry <br> compare and sort common 2D shapes and everyday objects <br> Sort 2D shapes <br> Make patterns with 2D shapes Children can sort two sets of 2D shapes in 2 or more different ways using different criteria each time. For example, they might choose 'dimensions' or 'right angled' |
| Nrich links | $\begin{array}{l\|l} 1 & 2 \end{array}$ | 13 |  | 1 2 3 4 5 6 <br> 7 8 9 10 11  |
|  | Spot the mistake: <br> 45,40,35,25 <br> What is wrong with this sequence of numbers? <br> True or False? I start at 3 and count in threes. <br> I will say 13? <br> What comes next? <br> $41+5=46,46+5=51,51+5=56$ <br> Do, then explain <br> 371373333 <br> If you wrote these numbers in order starting with the smallest, which number would be third? <br> Explain how you ordered the numbers. <br> Do, then explain <br> Show the value of the digit 2 in these numbers? <br> 322792 <br> Explain how you know. <br> Make up an example <br> Create numbers where the units digit is one less than the tens digit. What is the largest/smallest number? | Convince me What digits could go in the boxes? Try to find all of the possible answers. How do you know you have got them all? Convince me 7-2=46 <br> Fact families Which four number sentences link these numbers? 100, 67, 33 <br> What else do you know? If you know; $87=100-13$ what other facts do you know? <br> Missing symbols Write the missing symbols ( $+-=$ ) in these number sentences: <br> $8020100 \quad 1007030 \quad 8713100$ <br> True or false? Are these number sentences true or false? Give your reasons. $\begin{aligned} & 73+40=11398-18=70 \\ & 46+77=12392-67=35 \end{aligned}$ <br> Hard and easy questions <br> Which questions are easy / hard? Explain why you think the hard questions are hard? $23+10=93+10=\quad 54+9=54+1=$ <br> Other possibilities $\text { + + = } 14$ <br> What single digit numbers could go in the boxes? How many different ways can you do this? <br> Continue the pattern $90=100-10 \quad 80=100-20$ <br> Can you make up a similar pattern starting with the numbers 74, 26 and 100 ? <br> Missing numbers What number goes in the missing box? $91+=100 \quad 100-=89$ |  | What's the same, what's different? Pick up and look at these 3-D shapes. <br> Do they all have straight edges and flat faces? What is the same and what is different about these shapes? Visualising <br> In your head picture a rectangle that is twice as long as it is wide. <br> What could its measurements be? <br> Always, sometimes, never <br> Is it always, sometimes or nerver true that when you fold a square in half you get a rectangle? <br> Other possibilities <br> Can you find shapes that can go with the set with this label? <br> "Have straight sides and all sides are the same length" |

## Maths Curriculum Map - Year 2 (Spring)



| 而 | The Big Ideas <br> We need standard units of measure in order to compare things more accurately and consistently. | The Big Ideas <br> It is important that pupils both commit multiplication facts to memory and also develop an understanding of conceptual out unknown facts and in solving problems. <br> Pupils should look for and recognise patterns within tables and connections between them (e.g. $5 \times$ is half of 10x). <br> Pupils should recognise multiplication and division as inverse operations and use this knowledge to solve problems. They should also recognise division as both grouping and sharing The recognition of pattern in multiplication helps pupils commit facts to memory, for example doubling twice is the same as multiplying by four, or halving a multiple of ten gives you the related multiple of five. | The Big Ideas <br> It is important that pupils both commit multiplication facts to ory and also develop an understanding of conceptual relationships. This will aid them in using known facts to work out unknown facts and in solving problems. pater within tables and <br>  upils should recognise m so rions and use this knowledge to solve problems. They should The recognition of pattern in multiplication helps pupils commit facts to memory, for example doubling twice is the same as multiplying by four, or hat related multiple of five. | The Big Ideas We need standard units of measure in order to compare things more accurately and consistently. | The Big Ideas We need standard units of measure in order to compare things more accurately and consistently. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Links | Teaching for Mastery Year 2 <br> I See Reasoning - GM | Teaching for Mastery Year 2 <br> I See Reasoning - GM | Teaching for Mastery Year 2 <br> I See Reasoning - GM | Teaching for Mastery Year 2 <br> I See Reasoning - GM | Teaching for Mastery Year 2 I See Reasoning - GM |
|  | Mental calculations: <br> recognise and use symbols for pounds ( $\mathfrak{£}$ ) and pence (p); combine amounts to make a particular value; <br> Count money - pence <br> Count money - pounds <br> Count money - notes and coins <br> Select amounts <br> Find the total <br> Find the difference <br> find different combinations of coins that equal the same amounts of money <br> Make the same amount <br> Compare money <br> Holly has these coins. <br> Harry has the same amount of money but has six coins. What are they? Is there only one possible answer? solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Find change <br> Two-step problems <br> Jess has saved 62p. She spends 15 p. How much money does she have left? She pays with a 50 p piece. How much change does she get? | Mental calculations: <br> calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (*) and $=$ <br> Add equal groups <br> The multiplication symbol <br> Multiplication from pictures <br> Make equal groups - sharing <br> Make equal groups - grouping <br> Children should be able to: <br> Find missing numbers or symbols in a calculation: $4 x_{\_}=20 \_\div 10=3$ <br> Anna has 3 boxes of cakes. Each box contains 5 cakes. How many cakes does she have altogether? Show how you worked this out. show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot <br> Use arrays <br> Children should be able to: Use their knowledge of triangles of numbers to show related number facts. e.g. If $6 \times 2=12$ then $2 \times 6=12$ and $12 \div 6=2$. | Equivalence: <br> recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers <br> Recognise equal groups <br> Make equal groups <br> The 2 times table <br> The 5 times table <br> The 10 times table <br> Divide by 2 <br> Odd and even numbers <br> Divide by 5 Divide by 10 <br> The children should be able to: Recognise a multiple of 2,5 or 10 and use their knowledge of multiplication facts to find corresponding division facts. They can say which numbers are odd and which are even. <br> e.g. $2 \times 5=10$, show me three more number facts using these numbers. Is 34 an odd number? How do you know? | Length: <br> standard units to estimate and measure length/height in any direction ( $\mathrm{m} / \mathrm{cm}$ ); to the nearest appropriate unit, using rulers and scales <br> Measure length (cm) <br> Measure length ( m ) <br> Suggest sensible units you might use to measure: the height of your table? <br> Choose a piece of equipment to help you measure: how long the classroom is; how long this lesson lasts. <br> How long is this line? Now draw a line 2 cm longer than this one. <br> How long is the pencil? <br> Find an object in the classroom that you think is about 10 cm long. <br> If I programme my floor turtle to go forward three metres is there enough room in the classroom? How could you measure to find out? compare and order length and record the results using $\gg<,=$ Compare lengths Order lengths Four operations with length | Mass, Capacity and Temperature: choose and use appropriate standard units to estimate and measure temperature ( ${ }^{\circ} \mathrm{C}$ ) and capacity (litres $/ \mathrm{ml}$ ) to the nearest appropriate unit, using thermometers and measuring vessels <br> Millilitres Litres <br> Temperature <br> Suggest sensible units you might use to measure: how much water is in a cup; the weight of my reading book; how long it takes me to wash my hands, what is the temperature on this thermometer? Choose a piece of equipment to help you measure: how long this lesson lasts; how much water a cup holds. How much water is in this measuring jug? <br> compare and order volume/capacity and record the results using >, <br> Compare capacity <br> Megan and Jack are growing beans. Megan's plant is 25 cm tall. Jack's is 38 cm tall. Whose plant is the taller? By how much? Can you compare them using > or < ? <br> Mass and Weight: <br> choose and use appropriate standard units to estimate and measure length/height in any direction $(\mathrm{m} / \mathrm{cm})$; mass (kg/g); to the nearest appropriate unit, using rulers and scales <br> Measure mass (g) <br> Measure mass (kg) <br> Suggest sensible units you might use to measure: the weight of my reading book; <br> Choose a piece of equipment to help you measure: the weight of your shoe; About how heavy do you think your pencil case is? compare and order mass, and record the results using Compare mass |
| Nrich links | 123 | 13 | 1 2 3 4 <br> 5 6  8 | $\underline{\square}$ | 123 |
|  | Top tips <br> Put these measurements in order starting with the <br> smallest. 75 grammes 85 grammes 100 grammes <br> Explain your thinking <br> Position the symbols <br> Place the correct symbol between the measurements > <br> or < 36 cm 63 cm 130 ml 103 ml <br> Explain your thinking <br> Application <br> (Practical) Draw two lines whose lengths differ by 4 cm . <br> Possibilities <br> How many different ways can you make 63p using only <br> and ip coins? <br> Undoing <br> The film finishes two hours after it starts. It finishes at <br> 4.30. What time did it start? Draw the clock at the <br> start and the finish of the film. <br> Explain thinking <br> The time is $3: 15 \mathrm{pm}$. <br> Kate says that in two hours she will be at her football <br> game which starts at 4:15. Is Kate right? Explain <br> why. <br> Working backwards <br> Draw hands on the clock faces to show when break <br> started and when it finished 15 minutes later at 10:35. <br> The answer is .... 3 hours What is the question? <br> What do you notice? <br> What do you notice? 1 hour $=60$ minutes $1 / 2$ hour $=$ <br> 30 minutes $1 / 4$ hour $=15$ minutes Write down some <br> more time facts like these | Making links <br> Write the multiplication number sentences to describe this array <br> What do you notice? <br> Write the division sentences. <br> Prove It <br> Which four number sentences link these <br> numbers? 3, 5, 15? <br> Prove it. <br> Missing numbers <br> $10=5 \mathrm{x}$ <br> What number could be written in the box? <br> Making links <br> I have 30p in my pocket in 5p coins. How many coins do I have? <br> True or false? <br> When you count up in tens starting at 5 there 4 always be 5 units. <br> Use the inverse <br> Use the inverse to check if the following calculations are correct: <br> $12 \div 3=4 \quad 3 \times 5=14$ | Making links <br> Write the multiplication number sentences to describe this array What do you notice? Write the division sentences. Prove It Which four number sentences link these numbers? 3, 5, 15? Prove it. Missing numbers $10=5 \times$ What number could be written in the box? <br> Malking links I have 30p in my pocket in 5 p coins. How many coins do I have? <br> True or false? When you count up in tens starting at 5 there will always be 5 units. <br> Use the inverse <br> Use the inverse to check if the following calculations are correct: $12 \div 3=4 \quad 3 \times 5=14$ | Top tips <br> Put these measurements in order starting with the smallest. <br> 75 grammes 85 grammes <br> 100 grammes Explain your thinking <br> Position the symbols Place the correct symbol between <br> the measurements > or < <br> 36 cm 63 cm <br> Explain your thinking <br> Application (Practical) Draw two lines whose lengths differ by 4 cm . <br> Possibilities How many different ways can you make 63p using only 20p, 10p and ip coins? <br> Undoing The film finishes two hours after it starts. It finishes at 4.30. What time did it start? <br> Draw the clock at the start and the finish of the film. <br> Explain thinking <br> The time is $3: 15 \mathrm{pm}$. <br> Kate says that in two hours she will be at her football game <br> which starts at 4:15. Is Kate right? Explain why. <br> Working backwards <br> Draw hands on the clock faces to show when break started and when it finished 15 minutes later at 10:35. <br> The answer is .... 3 hours <br> What is the question? <br> What do you notice? <br> What do you notice? <br> 1 hour $=60$ minutes $\quad 1 / 2$ hour $=30$ minutes <br> Writer $=15$ minute <br> Write down some more time facts like these | Top tips <br> Put these measurements in order starting with the smallest. <br> 75 grammes 85 grammes 100 grammes <br> Explain your thinking <br> Position the symbols <br> Place the correct symbol between the measurements > or < <br> 36 cm 63 cm <br> 130 ml 103 ml <br> Explain your thinking <br> Application <br> (Practical) Draw two lines whose lengths differ by 4 cm . <br> Possibilities <br> How many different ways can you make 63p using only 20p, 1 <br> 1p coins? <br> Undoing <br> The film finishes two hours after it starts. It finishes at 4.30. What time did it start? Draw the clock at the start and the finish of the film. <br> Explain thinking <br> The time is $3: 15 \mathrm{pm}$. <br> Kate says that in two hours she will be at her football game which starts at 4:15. <br> Is Kate right? Explain why. <br> Working backwards <br> Draw hands on the clock faces to show when break started and when it finished 15 minutes later at 10:35. <br> The answer is .... 3 hours What is the question? <br> What do you notice? <br> What do you notice? <br> 1 hour $=60$ minutes $\quad 1 / 2$ hour $=30$ minutes $1 / 4$ hour $=15$ minutes <br> Write down some more time facts like these |

## Maths Curriculum Map - Year 2 (Summer)

| Number |  | Geometry |  |  | Measure |  | Statistics |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Block 1 <br> Week 1-2 | Block 2 Week 3-5 |  |  | Block 2 Week 6-7 |  | Block 3 Week 8 - 9 |  |  | Block 4 Week 10-12 |  |
|  | Statistics | Fractions |  |  | Position and Direction |  | Problem Solving and Efficient Methods |  |  | Time |  |
| KIRFs | To know the multiplication and division facts for the $\mathbf{1 0}$ times table |  |  |  |  | To know all doubles and halves of numbers to 20 |  |  |  |  |  |
| vocab | To know how to answer these questions in any order, including missing number questions$\text { e.g. } 10 \times \bigcirc=40 \text { or } \bigcirc \div 10=9 .$ |  | What is 10 multiplied by 7 ? What is 10 times $9 ?$ What is 60 divided by 10 ? |  |  | $\begin{gathered} 6+6=12 \\ 7+7=14 \\ 8+8=16 \\ 9+9=18 \\ 10+10=20 \\ \hline \end{gathered}$ | $\begin{aligned} & 1 / 2 \text { of } 12=6 \\ & 1 / 2 \text { of } 14=7 \\ & 1 / 2 \text { of } 16=8 \\ & 1 / 2 \text { of } 18=9 \\ & 1 / 2 \text { of } 20=10 \end{aligned}$ | $\begin{aligned} & 16+16=32 \\ & 17+17=34 \\ & 18+18=36 \\ & 19+19=38 \\ & 20+20=40 \\ & \hline \end{aligned}$ |  | What is double 9? What is half of 14 ? |  |
| Declara | - double and halve numbers to 20 <br> - begin to double multiples of 5 , to 100 |  |  | - begin to double two-digit numbers less than 50 with ones digits of $1,2,3,4$ or 5 show that multiplication of two numbers can be done in any way (commutative) and division of one number can by another cannot relate division to grouping [how many groups of 5 in 15?] |  |  |  |  |  |  |  |
|  | Make tally charts. <br> -Draw pictograms (1-1). <br> -Interpret pictograms ( $1-1$ ). <br> -Draw pictograms (2,5 and 10). <br> -Interpret pictograms ( 2,5 and 10). <br> -Block diagrams. | Make equal parts. $\bullet$ Recognise half. <br> - Find half <br> $\bullet$ Find a qua quarte <br> $\bullet$ Recognise a third. <br> $\bullet$ Find a third. <br> Unit fractions <br> - NonOunit fractions <br> Equivalence of $1 / 2$ and $2 / 4$ <br> - Count in frad three quarters. <br> in fractions. |  |  | Describing movement. <br> -Describing turns. <br> -Describing movement and turns. <br> -Making patterns with shapes. |  | ALL |  |  | - O'clock and half past. <br> -Quarter past and quarter to. <br> -Telling time to 5 minutes. <br> - Minutes in an hour, hours in a day. <br> -Find durations of time. <br> -Compare durations of time. |  |
|  | Interpret and construct simple pictograms, tally charts, block diagrams and simple tables. <br> -Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity. <br> -Ask and answer questions about totaling and comparing categorical data. | Recognise, find, name and write fractions 13, 14, 24and 340f a length, shape, set of objects or quantity. <br> -Write simple fractions for example, 120 f $6=$ <br> 3 and recognise the equivalence of 24 and 12 |  |  | Use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anticlockwise). <br> -Order and arrange combinations of mathematical objects in patterns and sequences. |  | ALL $\quad \left\lvert\, \begin{aligned} & \text { T } \\ & \text { in } \\ & \text { t } \\ & \text { t } \\ & \text { t }\end{aligned}\right.$ |  |  | Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. - Know the number of minutes in an hour and the number of hours in a day. <br> -Compare and sequence intervals of time. |  |
|  | Whole, equal, equal parts, $1 / 2$, fraction, denominator, fraction bar, numerator, $1 / 4,3 / 4$, third $1 / 3$, unit fraction, non-unit fraction, equivalent. | o'clock, half past, quarter past, quarter to, minute hand, hour hand, duration. |  |  | Pictogram, key, bar chart, scale, table, row, column, vertical axis, horizontal axis. |  | Clockwise, anticlockwise, forwards, backwards, left, right, middle, turn, half turn, quarter turn, three-quarter turn. |  |  | Whole, equal, equal parts, $1 / 2$, fraction, denominator, fraction bar, numerator, $1 / 4,34$, third $1 / 3$, unit fraction, non-unit fraction, equivalent. |  |
|  | The Big Ideas <br> Data need to be collected with a question or purpose in mind. Tally charts are used to collect data over (cars passing the school, birds on the bird | The Big Ideas <br> Fractions involve a rela inship between a whole and parts of a whole. Ensure children express this example, 'If the bag of 12 sweets is the whole, then 4 sweets are one third of the whole. <br> Partitioning or 'fair share' problems when each share is less than one gives rise to fractions. being measured gives rise to fractions. $\qquad$ |  |  | The Big Ideal <br> Tis not uncommon for pupilist tosay that thisis sa saure It is important tor pupilis to know what the properties are that make up ceratain shapes, and for them not to iust It is helpfutult to think aboutut non examples of of shapes. For example, why this is not atringle: <br> Recognising pattern and generalising structures and for later work in algebra. |  | The Big Ideas <br> problems involving multiplication and <br> on, by calculating the answer using concrete objects. <br> pictorial representations and arrays with the support of a <br> teacher <br> Find half of and double a number or quantity: 16 <br> children went to the park at the weekend. Half that <br> number went swimming. How many children went <br> swimming? <br> think of a number and halve it. I end up with 9 , what <br> was my original number? |  |  | The Big I We nee ord | standard units of measure in to compare things more rately and consistently. |
| Links | Teaching for Mastery Year 2 I See Reasoning - GM | Teaching for Mastery Year 2 I See Reasoning - GM |  |  | Teaching for Mastery Year 2 I See Reasoning - GM |  | Teaching for Mastery Year 2 I See Reasoning - GM |  |  | $\frac{\text { Teach }}{\text { I }}$ | ing for Mastery Year 2 <br> Reasoning - GM |



## Maths Curriculum Map - Year 3 (Autumn)



| $\begin{aligned} & \text { 는 쓴 } \\ & \text { 응 } \\ & \text { ㅇ } \end{aligned}$ | hundreds (100s), tens (10s), ones (1s), digit, place value, more, less, greater than (>), less than (<), equal to, order, compare, partition, estimate, exchange, ascending, descending. | Addition, subtraction, mental method, column method, exchange, estimate, approximate/ly, digit. | Equal, multiply, divide, times-table, sharing, grouping, array, bar model, remainder, repeated addition, multiplication sentence, division statement, division fact, partition. |
| :---: | :---: | :---: | :---: |
|  | The Big Ideas <br> The value of a digit is determined by its position in a number. Place value is based on unitising, treating a group of things as one 'unit'. This generalises to $\mathbf{3}$ units $+\mathbf{2}$ units $=5$ units (where the units are the same size). | The Big Ideas <br> Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20 . For example, given $8+7$, thinking of 7 as $2+5$, and adding the 2 and 8 to make 10 , then the 5 to 15. This should then be applied when calculating with larger numbers. <br> Subtraction bonds can be thought of in terms of addition: for example, in answering 15-8, thinking what needs to be added to 8 to make 15. Counting on for subtraction is a useful strategy that can also be applied to larger numbers. | The Big Ideas <br> It is important for children not just to be able to chant their multiplication tables but also to understand what the facts in them mean, to be able to use these facts to figure out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. $5 x$ is half of $10 x$ ). <br> They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication. |
| Links | Teaching for Mastery Year 3 I See Reasoning - GM PP | Teaching for Mastery Year 3 I See Reasoning - GM PP | Teaching for Mastery Year 3 I See Reasoning - GM PP |
|  | Counting: <br> count from $O$ in multiples of 4,8,50 and 100; <br> Hundreds <br> Count in 50s <br> a) Count on from zero in steps of $2,3,4,5,8,50,100$; <br> More or less: <br> find 10 or 100 more or less than a given number <br> 1,10, 100 more or less <br> Give me the number 100 less than 756 <br> Arabic Numbers: <br> read and write numbers up to 1000 in numerals and words <br> Numbers to 1000 <br> Read these numbers 428, 205, 25, 7, 909 <br> compare and order numbers up to 1000 <br> Comparing objects <br> Comparing numbers <br> Compare and order <br> Sort these numbers into ascending order: $95,163,8,740,25,0,400,303$ identify, represent and estimate numbers using different <br> representations <br> Number line to 1000 <br> Show me 642 on a number line, with Dienes apparatus etc. <br> What number is halfway between 65 and 95 ? How do you know? <br> Place Value: <br> recognise the place value of each digit in a three-digit number <br> (hundreds, tens, ones) <br> 100s, 10 s and is (1) <br> $100 \mathrm{~s}, 10 \mathrm{~s}$ and is (2) <br> For each of these numbers: 428, 205, 130, 25, 7, 909, tell me: How many hundreds? How many tens it has? How many ones? | Mental Calculations: <br> add and subtract numbers mentally, including a three-digit number and ones, a three-digit <br> number and tens, three-digit number and hundreds <br> Add and subtract multiples of 100 <br> Add and subtract three-digit number and ones - not crossing 10 <br> Subtract a 1-digit number from a 3-digit number - crossing 10 <br> Add a 3-digit number and tens - crossing 100 <br> Subtract tens from a 3-digit number - crossing 100 <br> Add and subtract 100s <br> What number is 27 more than 145? What number is 19 more than 145 ? Explain how you worked out these two calculations. <br> Work out the missing digits: $\quad \square+\square 2=85$ <br> Work out these subtraction calculations: <br> 72-5 372-68270-382-15132-2870-66 <br> Did you use the same method for each calculation? If not, why not? Explain your methods to a <br> friend and compare your methods with theirs. What number is 199 more than 428? <br> What is the difference between 1999 and 4003? <br> Written calculations: <br> digits, using formal written methods of columnar addition and subtraction <br> Add 3-digit and 1-digit - crossing 10 <br> Add and subtract 3-digit numbers and tens - not crossing 100 <br> Spot the pattern - making it explicit <br> Add and subtract a 2-digit and 3-digit number - not crossing 10 or 100 <br> Add a 2-digit and 3-digit number - crossing 10 or 100 <br> Subtract a 2-digit number from a 3-digit number - cross the 10 or 100 <br> Add two 3-digit numbers - not crossing 10 or 100 <br> Add two 3-digit numbers - crossing 10 or 100 <br> Subtract a 3 -digit number from a 3 -digit number - no exchange <br> Subtract a 3 -digit number from a 3 -digit number - exchange <br> Would you use a mental, written or calculator method to solve each of these? Explain your choice. <br> $23.05+\square=176.25$ <br> What is the total cost if I buy food costing $£ 3.86$ and $£ 8.57$ ? <br> These are the start and finish times of a film. | Mental calculations: <br> write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental <br> Multiplication - equal groups <br> Comparing statements <br> One orange costs nineteen pence. How much will three oranges cost? <br> Mark drives 19 miles to work every day and 19 miles back. He does this on Mondays, Tuesdays, Wednesdays, Thursdays and Fridays. How many miles does he travel to work and back in one week? <br> Written Calculations - multiplication: <br> write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods <br> Multiply 2-digits by 1 -digit (1) <br> Multiply 2-digits by 1-digit (2) <br> Divide 2-digits by 1-digit (1) <br> Divide 2-digits by 1-digit (2) <br> Divide 2-digits by 1-digit (3) <br> Derive and recall: <br> recall and use multiplication and division facts for the 3,4 and 8 multiplication tables <br> Multiply by 3 <br> Divide by 3 <br> The 3 times table <br> Multiply by 4 <br> Divide by 4 <br> The 4 times table <br> Multiply by 8 <br> The 8 times table <br> Divide by 8 <br> Related facts <br> Multiply seven by three; what is four multiplied by nine? Etc. <br> Circle three numbers that add to make a multiple of 4111213141516171819 <br> Leila puts 4 seeds in each of her pots. She uses 6 pots and has 1 seed left over. How many seeds <br> did she start with? <br> At Christmas, there are 49 chocolates in a tin and Tim shares them between himself and 7 other members of the family. How many chocolates will each person |
| Nrich <br> links | 1 2 3 | START 14:05 FINISH 16:25 <br> How long was the film? <br> A packet of crisps costs 32p. Josh buys two packets. How much change does he get from $£ 1$ ? |  |
|  | Spot the mistake: 50,100,115,200 <br> What is wrong with this sequence of numbers? <br> True or False? 38 is a multiple of 8 <br> What comes next? $936-10=926, \quad 916-10=906$ <br> $926-10=916$, <br> Do, then explain 835535538388508 <br> If you wrote these numbers in order starting with the smallest, which number would be third? <br> Explain how you ordered the numbers. <br> Do, then explain Show the 3 value of the digit 3 in these numbers? <br> 341503937 <br> Explain how you know. <br> Make up an example Create numbers where the digit sum is three. <br> Eg 120, 300, 210 What is the largest/smallest number? <br> Possible answers A number rounded to the nearest ten is 540 . What is the smallest possible number it could be? <br> What do you notice? Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Can you suggest other numbers like this? | True or false? <br> Are these number sentences true or false? <br> $597+7=614 \quad 804-70=744 \quad 768+140=908$ <br> Give your reasons. <br> Hard and easy questions <br> Which questions are easy / hard? <br> $323+10=393+10=454-100=954-120=$ <br> Explain why you think the hard questions are hard? <br> Convince me <br> The total is 201 <br> Each missing digit is either a 9 or a 1 . Write in the missing digits. <br> Is there only one way of doing this or lots of ways? <br> Convince me <br> Possibilities <br> I bought a book which cost between $£ 9$ and $£ 10$ and I paid with a ten pound note. <br> My change was between 50p and $£ 1$ and was all in silver coins. What price could I have paid? | Use a fact $20 \times 3=60$. Use this fact to work out <br> $21 \times 3=22 \times 3=23 \times 3=24 \times 3=$ <br> Prove lt - What goes in the missing box? <br> How close can you get? $\square$ $\times \square$ <br> Using the digits 2,3 and 4 in the calculation above how close can you get to 100 ? What is the largest product? What is the smallest product? <br> Missing numbers $24=x$ <br> Which pairs of numbers could be written in the boxes? <br> Making links Cards come in packs of 4 . How many packs do I need to buy to get 32 cards? <br> Use the inverse Use the inverse to check if the following calculations are correct $23 \times 4=82 \quad 117 \div 9=14$ <br> Size of an answer Will the answer to the following calculations be greater or less than 80 $23 \times 3=\quad 42 \times 3=32 \times 3=\quad 36 \times 2=$ <br> True or false? All the numbers in the two times table are even. <br> There are no numbers in the three times table that are also in the two times table. |

## Maths Curriculum Map - Year 3 (Spring)



| 而 | The Big Ideas <br> Fractions are equal parts of a whole. Equal parts of shapes do not need to be congruent but need to be equal in area. Decimal fractions are linked to other fractions. The number line is a useful representation that helps children to think about fractions as numbers. | The Big Ideas <br> Developing benchmarks to support estimation skills is important as pupils become confident in their use of standard measures. The height of a door frame, for example, is approximately 2 metres, and a bag of sugar weighs approximately 1 kilogram. | The Big Ideas <br> It is important for children not just to be able to chant their multiplication tables but also to understand what the facts in them mean, to be able to use these facts to figure out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. $5 \times$ is half of $10 \times$ ). <br> They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication. | The Big Ideas <br> Developing benchmarks to support estimation skills is important as pupils become confident in their use of standard measures. The height of a door frame, for example, is approximately 2 metres, and a bag of sugar weighs approximately 1 kilogram. |
| :---: | :---: | :---: | :---: | :---: |
| Links | Teaching for Mastery Y3 I See Reasoning - GM PP | Teaching for Mastery Y3 <br> I See Reasoning - GM PP | Teaching for Mastery Y3 <br> I See Reasoning - GM PP | Teaching for Mastery Y3 <br> I See Reasoning - GM PP |
|  | Recognise fractions: <br> unit fractions and non-unit fractions with small denominators <br> Unit and non-unit fractions <br> Tenths <br> Unit Fractions. Unit means one. Here are some examples of unit fractions. Non-unit fractions. Unit means one, so non-unit is any number apart from one. Here are some examples of non-unit fractions. <br> Many (or, rather, more than one of the) parts, of an equally divided whole, is <br> a non-unit fraction. What fraction of this shape is shaded? How do you <br> know? <br> Fractions as numbers: <br> recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators <br> Count in tenths <br> Fractions on a number line <br> Position fractions on a number line; eg. mark fractions such as $1 / 2$, <br> $31 / 2$ and $23 / 10$ on a number line marked from zero to 5 . <br> A fraction of each shape is shaded. Match each fraction to the correct place on the number line. One has been done for you. <br> Fractions of amounts: <br> recognise, find and write fractions of a discrete set of objects: <br> Fractions of an amount (1) <br> Fractions of an amount (2) <br> Fractions of an amount (3) <br> Is there another way that you can describe the fraction? $\square$ One fifth of $60 \mathrm{~kg} \square$ Two fifths of 50 litres | Calculating measures: <br> measure, compare, add and subtract: lengths <br> ( $\mathrm{m} / \mathrm{cm} / \mathrm{mm}$ ); <br> Measure length <br> Draw accurately <br> Length: children should be able to find something that they think is just shorter/longer than a metre/ centimetre/ millimetre. They should be able to check whether they are right. What is the difference in length between the pen and the pencil? measure, compare, add and subtract: volume/capacity ( $1 / \mathrm{m}$ ) <br> Converting Units: <br> measure, compare, add and subtract: lengths ( $\mathrm{m} / \mathrm{cm} / \mathrm{mm}$ ); <br> Equivalent lengths ( m and cm ) <br> Equivalent lengths ( mm and cm ) <br> Compare lengths <br> Add lengths <br> Subtract lengths | Checking: <br> estimate the answer to a calculation and use inverse operations to check answers <br> Matthew sys if he has 75 sweets shared by 5 friends, they will each have 17 sweets. Write down a multiplication questions that you could do to check this? <br> Multiples and Factors: <br> (Year 4 objective) Begin to recognise and use factor pairs and commutativity in mental calculations within the multiplication facts that they have learnt <br> Solving Problems: <br> solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which $n$ objects are connected to m objects <br> Scaling <br> How many ways <br> Miss West needs 28 paper cups. She has to buy them in packs of 6 <br> How many packs does she have to buy? <br> Tom is laying tiles. He has 84 tiles; how many complete rows and columns could he make? Fill in the missing digits in these calculations | Mass and Capacity: <br> Measure capacity (1) <br> Measure capacity (2) <br> Here is a tea urn and a teapot. The bottles show how much water each can hold. How much more does the tea urn hold? Capacity: Find a container that they think would hold one litre and check to find out if they were correct. <br> measure, compare, add and subtract: mass (kg/g); <br> Measure mass (1) <br> Measure mass (2) <br> Mass: Say which object in the classroom is heavier than $100 \mathrm{~g} / \mathrm{kilogram} /$ half-kilograms and know how to check if they are correct. <br> What is the weight of the flour shown by this scale? Say what each division on this scale is worth and explain how they worked this out. <br> Converting Units: <br> measure, compare, add and subtract: volume/capacity ( $1 / \mathrm{m}$ ) <br> Compare capacity <br> Add and subtract capacity <br> measure, compare, add and subtract: mass ( $\mathrm{kg} / \mathrm{g}$ ); <br> Compare mass <br> Add and subtract mass |
| Nrich links | 1 2 3 4 <br> 5  6 7 | 13 | - | 123 |
|  | True or false? <br> (Looking at a bar chart) <br> "Twice as many people like strawberry than lime". <br> Is this true or false? <br> Convince me. <br> Make up your own 'true/false' statement about the bar chart. <br> What's the same, what's different? <br> Pupils identify similarities and differences between different representations and explain them to each other <br> Create a question <br> Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. | Top Tips <br> Put these measurements in order starting with the largest. Explain your thinking <br> Half a litre; Quarter of a litre; 300 ml <br> Position the symbols Place the correct symbol <br> between the measurements > or < <br> 306 cm Half a metre <br> 930 ml 1 litre <br> Write more statements <br> If there are 630 ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? <br> Position the symbols <br> Place the correct symbols between the measurements > or < Explain your thinking <br> £23.60 2326p 2623p | Use a fact $20 \times 3=60$. <br> Use this fact to work out <br> $21 \times 3=22 \times 3=23 \times 3=24 \times 3=$ <br> Prove It What goes in the missing box? <br> How close can you get? <br> ㅁㅁㅁ <br> Using the digits 2,3 and 4 in the calculation above how close can you get to 100 ? What is the largest product? What is the smallest product? <br> Missing numbers $24=x$ Which pairs of numbers could be written in the boxes? <br> Making links Cards come in packs of 4 . How many packs do I need to buy to get 32 cards? <br> Use the inverse Use the inverse to check if the following calculations are correct <br> $23 \times 4=82 \quad 117 \div 9=14$ <br> Size of an answer Will the answer to the following calculations be greater or less than 80 <br> $23 \times 3=32 \times 3=42 \times 3=36 \times 2=$ <br> True or false? All the numbers in the two times table are even. There are no numbers in the three times table that are also in the two times table. | Top Tips <br> Put these measurements in order starting with the largest. Explain your thinking <br> Half a litre; Quarter of a litre; 300 ml Position the symbols Place the correct symbol between the measurements > or < 306 cm Half a metre 930 ml 1 litre <br> Write more statements <br> If there are 630 ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? Position the symbols <br> Place the correct symbols between the measurements > or < Explain your thinking £23.60 2326p 2623p |

## Maths Curriculum Map - Year 3 (Summer)




## Maths Curriculum Map - Year 4 (Autumn)




## Maths Curriculum Map - Year 4 (Spring)

| Number |  | Geometry |  |  | Measure |  | Statistics |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sown | Block 1 <br> Week 1-3 | Block 2 <br> Week 4-5 |  | $\begin{gathered} \text { Block } 6 \\ \text { Week } 6-9 \end{gathered}$ |  |  | Block 4 Week 10-12 |  |
|  | Multiplication and Division | Length and Perimeter |  | Fractions |  |  | Decimals |  |
| KIRF | To know the multiplication and division facts for the $\mathbf{7}$ times table |  |  |  | To know the multiplication and division facts for the $\mathbf{1 2}$ times table |  |  |  |
| 0 <br> 0 <br> 0 <br> 0 | They should be able to answer these questions in any order, including missing number questions$\text { e.g. } 7 \times \bigcirc=28 \text { or } \bigcirc \div 6=7 .$ |  | What is 7 multiplied by 6 ? <br> What is 7 times 8 ? What is 84 divided by 7 ? |  | They should question missi <br> e.g. $12 \times$ $\square$ | be able to answer these any order, including number questions 4 or $\div 12=7$. | What is 7 multiplied by 12 ? What is 12 times 8 ? <br> What is 48 divided by 12 ? |  |
| Declar | - derive quickly doubles of multiples of 10 up to 500 eg. $360+360$ <br> - use place value and number facts to add one, two, three and four-digit numbers where a mental calculation is appropriate <br> - subtract by counting up <br> - count form O in steps of 6, 7, 925 and 1000 [children should know by heart all the multiplication facts up to $12 \times 127$ |  |  |  | - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; multiplying by 10 and 100 ; dividing by 1 ; multiplying together three numbers <br> - multiply multiples of $10,100,1000$ by single digit numbers [ $300 \times 6$ or $4000 \times 8$ ] <br> - use distributive law to multiply larger numbers [ $36 \times 5$ could be $30 \times 5$ and $6 \times 5$ adjustment by spotting 'nearly' numbers eg $6 \times 19$ is nearly $6 \times 20$ |  |  |  |
|  | 11 and 12 times-table. <br> -Multiply 3 numbers. <br> - Factor pairs. <br> -Efficient multiplication. <br> -Written methods. <br> - Multiply 2 -digits by 1 -digit. <br> -Multiply 3 -digits by 1 -digit. <br> -Divide 2 -digits by 1 -digit (1). <br> $\bullet$ Divide 2-digits by 1-digit (2). <br> -Correspondence problems. | Kilometres. <br> - Perimeter on a grid. <br> -Perimeter of a rectangle. <br> -Perimeter of rectilinear shapes. |  | What is a fraction? <br> -Equivalent fractions (1) <br> -Equivalent fractions (2). <br> -Fractions greater than 1. <br> -Count in fractions. <br> -Add 2 or more fractions. <br> - Subtract 2 fractions. <br> - Subtract from whole amounts. <br> -Calculate fractions of a quantity. <br> -Problem solving -calculate quantities. |  |  | Recognise tenths and hundredths. <br> -Tenths as decimals. <br> -Tenths on a place value grid. <br> -Tenths on a number line. <br> -Divide 1 digit by 10. <br> -Divide 2 digits by 10. <br> -Hundredths. <br> - Hundredths as decimals. <br> -Hundredths on a place value grid. <br> -Divide 1 or 2 digits by 100. |  |
| 흔 3 응 ¢ 은 ¢ | Recall and use multiplication and division facts for multiplication tables up to $12 \times 12$. -Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers. $\bullet$ Recognise and use factor pairs and commutativity in mental calculations. - Multiply two digit and three digit numbers by a one digit number using formal written layout. <br> -Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as $n$ objects are connected to m objects | Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres. <br> - Convert between different units of measure [for example, kilometre to metre]. |  | Recognise and show, using diagrams, families of common equivalent fractions. <br> -Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. <br> - Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number. <br> -Add and subtract fractions with the same denominator. |  |  | Recognise and write decimal equivalents of any number of tenths or hundredths. -Find the effect of dividing a one or two digit number by 10 or 100 , identifying the value of the digits in the answer as ones, tenths and hundredths. |  |
|  | Equal, multiply, divide, times-table, sharing, grouping, array, bar model, remainder, repeated addition, multiplication sentence, division statement, division fact, partition. | Length, width, perimeter, distance, rectangle, square, rectilinear shape, centimetre ( cm ), metre ( m ), kilometre (km), equivalent to. |  | Tenths, hundredths, equivalent, simplify, numerator, denominator, fraction, mixed number, improper fraction, simplest fraction, fraction of an amount, decimal point, equivalent decimal, 0.1 and 0.01 , decimal place. |  |  |  |  |



## Maths Curriculum Map - Year 4 (Summer)




## Maths Curriculum Map - Year 5 (Autumn)




## Maths Curriculum Map - Year 5 (Spring)



|  | The Big Ideas <br> Representations that may appear different sometimes have similar underlying ideas. For example, 14, 0.25 and $25 \%$ are used in different contexts but are all connected to the same idea. | The Big Ideas <br> Representations that may appear different sometimes have similar underlying ideas. For example, 14, 0.25 and $25 \%$ are used in different contexts but are all connected to the same idea. | The Big Ideas <br> Representations that may appear different sometimes have similar underlying ideas. For example $14,0.25$ and $25 \%$ are used in different contexts but are all connected to the same idea. | The Big Ideas <br> The relationship between area and perimeter is not a simple one. Increasing or decreasing area does not necessarily mean the perimeter increases or decreases respectively, or vice versa. Area is measured in square units. For rectangles, measuring the length and breadth is a shortcut to finding out how many squares would fit into each of these dimensions. |  | The Big Ideas <br> Different representations highlight different aspects of data. It is important to be able to answer questions about data using inference and deduction, not just direct retrieval. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Link | g for | Teaching for Mastery Year 5 | Teaching for Mastery Year | Teaching for Mastery Year 5 |  | Teaching for Mastery Year 5 |
|  | multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for <br> two-digit numbers <br> Multiply 4 -digits by 1 -digit <br> Multiply 2-digits (area model) <br> Multiply 2-digits by 2-digits <br> Multiply 3 -digits by 2 -digits <br> Multiply 4-digits by 2-digits <br> a com for expanded layouts (such as the grid method) towards Suggest $w$ layout for $\mathrm{HTU} \times U$ and $T U \times T U$ calculations. a For example, $56 \times 27$ is approximately $60 \times 30=1800$. <br> divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders <br> appropriately for the context <br> Divide 4-digits by 1-digit <br> Divide with remainders <br> Extend written methods for division to include HTU $\div \mathrm{U}$, including calculations with remainders. Suggest an approximate answer before starting a calculation and use this to check that the answer sounds sensible. Increase the efficiency of the methods being used for example: $196 \div 6$ is approximately $200 \div 5=4032$ r 4 or $4 / 6$ or $2 / 3$ (as well as using short division methods) Know that, depending on the context, answers to division questions may need to be rounded up or rounded down. Explain whether to round up or down to answer problems such as: - Egg boxes hold 6 eggs. A farmer collects 439 eggs. How many boxes can he fill? - Egg boxes hold 6 eggs. How many boxes must a restaurant buy to have 200 eggs? <br> use rounding to check answers to calculations and determine, in <br> the context of a problem, levels of accuracy <br> Use rounding to approximate and check e.g. $2593+6278$ must <br> be more than $2500+6200 \quad 2403-1998$ is about 2400-2000 <br> Write approximate answers to calculations, e.g. write an <br> approximate answer for $516 \div(15+36)$ | recognise mixed numbers and improper fractions and convert from one form to the other. Write mathematical statements $>1$ as a mixed number <br> Improper to mixed numbers <br> Mixed numbers to improper <br> Count in fractions <br> How many halves in: $11 / 231 / 291 / 2 \ldots$...? <br> How many quarters in $11 / 421 / 451 / 4$....? <br> (Year 3 objective) recognise and use <br> fractions as numbers: <br> Fraction of an amount <br> Fractions as operators <br> identify, name and write equivalent <br> fractions of a given fraction, represented <br> visually, including tenths and hundredths <br> Equivalent fractions <br> compare and order fractions whose denominators are all multiples of the same number <br> Compare and order (less than 1) Compare and order (more than 1) Children should be able to circle the two fractions that have the same value, or choose which one is the odd one out and justify their decision. 6/10, 3/5, 18/20,9/15 | (Year 4 objective) count up and down in hundredths <br> read, write, order and compare numbers with up to three decimal places <br> Order and compare decimals <br> Write these numbers in order of size, starting <br> with the smallest. 1.01, $1.001,1.101,0.11$ <br> Put the correct symbol, < or >, in each box. $3.03 \square$ <br> $3.30 .37 \square 0.327$. Order these numbers: 0.27 <br> 0.2070 .0272 .072 .7 <br> read and write decimal numbers as fractions (e.g. $0.71=7 / 100$ ) <br> Decimals and fractions (1) <br> Decimals and fractions (2) <br> What decimal is equal to 25 hundredths? Write the total as a decimal: $4+6 / 10+2 / 100=$ <br> Children partition decimals using both decimal and fraction notation, for example, recording 6.38 as $6+3 / 10+8 / 100$ and as $6+0.3+0.08$. <br> recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents <br> Thousandths as decimals <br> Recognise that 0.007 is equivalent to $7 / 10006.305$ is equivalent to ${ }^{6305} / 100$ <br> write percentages as a fraction with denominator 100 , and as a decimal <br> \% Fractions and decimals Equivalent FDP <br> Which is bigger: $65 \%$ or 34 ? How do you know? <br> measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres <br> Measure perimeter <br> Calculate perimeter <br> calculate and compare the area of <br> rectangles (including squares), and including using standard units, square centimetres ( cm ) and square metres ( m 2 ) and estimate the area of irregular shapes <br> Area of rectangles <br> Area of compound shapes <br> Area of irregular shapes <br> Calculate the area of a <br> rectangle which is eleven <br> metres long by 5 metres wide. <br> Which has the greatest area a square with sides 6 cm long or a rectangle which is 7 cm long by 5 cm ? How much greater is the area? |  |  | complete, read and interpret information in tables, <br> Read and interpret tables Two way tables <br> I can find the information in a table or graph to answer a question <br> Solve comparison, sum and difference problems using information presented in a line graph <br> Read and interpret line graphs <br> Draw line graphs <br> Problems with line graphs <br> Begin to decide which representations of data are most appropriate and why. Connect work on coordinates and scales to interpret time graphs |
| Nrich links | 1 |  | you know? <br> Which is the odd one out in each of these What is $31 / 100$ as a percentage? Which is a better mark in a test: $61 \%$, or 30 out of 50 ? How do you know? | 1 2 <br> 5 6 <br> 9  | 3 4 <br> 7 8 <br> 10  |  |
|  | Use a fact $3 \times 75=225$ <br> Use this fact to work out 450 $6=225 \div 0.6=$ To multiply by 25 you multiply by 100 and then divide by 4 . Use this strategy to solve $48 \times 25$ $4.6 \times 25$ <br> Use the inverse <br> Use the inverse to check if the following calculations are correct: $\begin{aligned} & 4321 \times 12=51852 \\ & 507 \div 9=4563 \end{aligned}$ <br> Size of an answer <br> The product of a two digit and three digit number is approximately 6500 . What could the numbers be? | Give an example of a fraction that is more than three quarters. Now another example that no one else will think of. Explain how you know the fraction is more than three quarters. <br> What do you notice? <br> Find $30 / 100$ of 200 Find $3 / 10$ of 200 What do you notice? <br> Can you write any other similar statements? | Spot the mistake $0.088,0.089,1.0$ What comes next? 1.173, 1.183, 1.193 <br> What do you notice? <br> One tenth of $£ 41$, One hundredth of $£ 41$, One thousandth of $£ 41$ Continue the pattern. What do you notice? $0.085+$ $0.015=0.10 .075+0.025=0.1$ <br> $0.065+0.035=0.1$ Continue the pattern for the next five number sentences. <br> True or false? <br> 0.1 of a kilometre is 1 m . 0.2 of 2 kilometres is 2 m . 0.3 of 3 Kilometres is 3 m 0.25 of 3 m is 500 cm . $2 / 5$ of $£ 2$ is 20 p Missing symbol Put the correct symbol < or > in each box Odd one out. collections of 4 fractions? <br> Put in Order Imran put these fractions in order starting with the smallest. Are they in the correct order? Two fifths, three tenths, four twentieths How do you know? Complete the pattern Another and another Write a fraction with a denominator of one hundred which has a value of more than 0.75 ? <br> ... and another, ... and another, ... Ordering <br> Put these numbers in the correct order, starting with the largest. Explain your thinking 7/10, 0.73, 7/100, $0.07371 \%$ | Testing Conditions Shape A is a rectangle that is 4 m long \& $3 m$ wide. Shape $B$ is $a$ square with sides 3 m . The rectangles and squares are put together side by side to make a path which has perimeter between $20 \& 30 \mathrm{~m}$. <br> e.g Can you draw some other arrangements where the perimeter is between $20 \& 30 \mathrm{~m}$ ? Always, sometimes, never? When you cut off a piece of a shape you reduce its area and perimeter. |  | True or false? (Looking at a train time table) "If I want to get to Exeter by 4 o'clock this afternoon, I will need to ge to Taunton station before midday". Is this true or false? <br> Convince me. <br> Make up your own 'true/false' statement about a journey using the timetable. <br> What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each other <br> Create a question <br> Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. |

## Maths Curriculum Map - Year 5 (Summer)

| Number |  | Geometry | Measure |  | Statistics |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Week 1-3 Block 1 | Week 4-5 Block 2 | Week 6 - 8 Block 3 | Week 9 <br> Block 4 | Week 10-11 Block 5 | Week 12 Block 6 |
|  | Shape | Position and Direction | Decimals | Negative numbers | Converting Units | Volume |
| KIRFs | To know the first 5 cube numbers |  | To know how to convert between improper fractions and mixed fractions |  |  |  |
| 0 <br> 0 <br> 0 <br> 0 | cube, square, digit, times, factors, multiples, diagram, prove, pattern sequence | What is the cube of 3 ? what is the cube root? how do you know? how can you prove this? | fraction, percentage, decimal, decimal point, top heavy, denominator, numerator, whole number, part, improper fraction, mixed number, convert |  | multiply the numerator, divide the denominator how can you make it mixed? |  |
| - identify and use knowledge of multiples and factors, including finding all factor pairs of a number, and common factors of two numbers <br> - use partitioning to double and halve, including money <br> - partition two-digit numbers, including decimals, to multiply by a single-digit number mentally [ $6 \times 27$ as $6 \times 20+6 \times 7 / 6.3 \times 7$ as $6 \times 7+0.3 \times 7]$ |  |  |  | - divide larger numbers mentally by subtracting the $10^{\text {th }}$ and $100^{\text {th }}$ multiple as appropriate [ $96 \div 10$ is $10 \times 6=60$ and $6 \times 6=36$ ] <br> - use common factors to simplify fractions; use common multiples to express fractions in the same denomination |  |  |
|  | Measuring angles in degrees. <br> $\bullet$ Measuring with a protractor (1). <br> - Measuring with a protractor (2). <br> -Drawing lines and angles accurately. <br> -Calculating angles on a straight line. <br> -Calculating angles around a point. <br> -Calculating lengths and angles in shapes. <br> -Regular and irregular polygons. <br> -Reasoning about 3D shapes | Position in the first quadrant. <br> - Reflection. <br> -Reflection with coordinates. <br> -Translation. <br> -Translation with coordinates. | Adding and subtracting decimals within 1. <br> -Complements to 1. <br> -Adding decimals-crossing the whole. <br> -Adding decimals with the same number of decimal places. <br> -Subtracting decimals with the same number of decimal places. <br> -Adding and subtracting decimals with a different number of decimal places. <br> -Adding and subtracting whole and decimals. <br> -Decimal sequences. <br> -Multiplying decimals by 10,100 and 1000. <br> $\bullet$ Dividing decimals by 10,100 and 1,000 . | - Negative numbers <br> - Round number to 1 million | Kilograms and kilometres. -Milligrams and millilitres. - Metric units. <br> -Imperial units. <br> $\bullet$ Converting units of time. <br> $\bullet$ Timetables. | What is volume? <br> - Compare volume. <br> -Estimate volume. <br> -Estimate capacity. |
|  | Identify 3D shapes, including cubes and other cuboids, from 2D representations. <br> - Use the properties of rectangles to deduce related facts and find missing lengths and angles. <br> -Distinguish between regular and irregular polygons based on reasoning about equal sides and angles. <br> -Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles. <br> -Draw given angles, and measure them in degrees. <br> -Identify: angles at a point and one whole turn (total $360^{\circ}$ ), angles at a point on a straight line and $1 / 2$ a turn (total $180^{\circ}$ ) other multiples of $90^{\circ}$. | Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed. | Solve problems involving number up to three decimal places. <br> -Multiply and divide whole numbers and those involving decimals by 10,100 and 1000. <br> -Use all four operations to solve problems involving measure [ for example, length, mass, volume, money] using decimal notation, including scaling. | Interpret negative numbers in context, count forwards and positive and negative whole numbers including through zero. -Round any number up to 1000000 to the nearest $10,100,1000$, 10000 and 100000. - Solve number problems and practical problems that involve all of the above | Convert between different units of metric measure [for example, km and $\mathrm{m} ; \mathrm{cm}$ and $\mathrm{m} ; \mathrm{cm}$ and $\mathrm{mm} ; \mathrm{g}$ and kg ; I and ml$]$. <br> - Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. - Solve problems involving converting between units of time. | Estimate volume [for example using 1 cm 3 blocks to build cuboids <br> $\bullet$ (including cubes)] and capacity [for -example, using water]. Use all four operations to solve problems involving measure. |
|  | Angle, whole turn, right angle, acute angle, obtuse angle, reflex angle, degree ( ${ }^{\circ}$ ), interior angle, clockwise, anticlockwise, orientation, parallel, perpendicular, right angle, interior angle, quadrilateral, regular, irregular, 3D shape, pyramid, sphere, cone, hexagon, pentagon, triangle. | Reflection, translation, vertex, vertices, coordinates, mirror line, horizontal axis, vertical axis, quadrant. | Decimal place, tenth, hundredth, thousandth, decimal point, place value, digit, fraction, per cent (\%), percentage, one decimal place, two decimal places. |  | Convert, metric unit, imperial unit, kilo, kilogram, gram, millimetre, centimetre, metre, kilometre, litre, millilitre, pound (lb), ounce (oz), inch (in), foot (ft), yard (yd), pint, gallon, stone (st), approximately. | Volume, solid, capacity, calculate, estimate, cube. |


| \#11 | The Big Ideas <br> During this year, pupils increase the range of 2-D and 3-D shapes that they are familiar with. With 3-D shapes they think about the faces as well as the number of vertices and through considering nets think about the 2-D shapes that define the 3-D shapes. <br> Pupils learn about a range of angle facts and use them to describe certain shapes and derive facts about them. Regular shapes have to have all sides and all angles the same. Although non-square rectangles have four equal angles, the fact that they do not have four equal sides means that they are not regular. Some properties of shapes are dependent upon other properties. For example, a rectangle has opposite sides equal because it has four right angles. A rectangle is defined as a quadrilateral with four right angles. It does not have to be defined as a quadrilateral with four right angles and two pairs of equal sides. |  |  |  | unit, the mber of unit easure (that is, rse relationship | The Big Ideas Developing benchmarks to support estimation skills is important as pupils become confident in their use of standard measures. The height of a door frame, for example, is approximately 2 metres, and a bag of sugar weighs approximately 1 kilogram. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lin | Teaching for Mastery Year 5 | Teaching for Mastery Y | Teaching for Mastery Year |  | aching for Mastery Year | eaching for Mastery Year 5 |
|  | Identify 3D shapes, including cubes and other cuboids, from 2D representations Reasoning about 3D shapes <br> Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles <br> Year 6 Introduce angles <br> Draw given angles, and measure them in degrees ( ${ }^{\circ}$ ) <br> Measuring angles in degrees <br> Measure with a protractor (1) <br> Measure with a protractor (2) <br> Draw accurately <br> Children become accurate in drawing lines with a ruler to the nearest millimetre and measuring with a protractor. Children use conventional markings for parallel lines and right angles <br> Use the properties of rectangles to deduce related facts and find missing lengths and angles. <br> Lengths and angles <br> Distinguish between regular and irregular polygons based on reasoning about equal sides and angles Regular and irregular polygons identify angles at a point and one whole turn (total $360^{\circ}$ ), angles at a point on a straight line and a half turn (total $180^{\circ}$ ) and other multiples of $90^{\circ}$ <br> Angles on a straight line <br> Angles round a point | represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed <br> Position in the first quadrant <br> Translation <br> Translation with coordinates <br> identify, describe and represent the position <br> of a shape following a reflection or translation , using the appropriate language, and know that the shape has not changed <br> Reflection <br> Reflection with coordinates | Add decimals within 1 <br> Subtract decimals within 1 <br> Add decimals - cross the whole <br> Adding - same decimal places <br> Subtracting - same decimal places <br> Adding - different d.p. <br> Subtracting - different d.p. <br> Adding and subtracting wholes and decimals <br> Children add decimals within one whole. They use place value counters and place value charts to support adding decimals and understand what happens when we exchange between columns. Children build on their understanding that 0.45 is 45 hundredths, children can use a hundred square to add decimals <br> multiply and divide whole numbers and those involving decimals by 10,100 and 1,000 <br> Multiplying by 10,100 and 1000 Dividing by 10,100 and 1000 Multiples of 10,100 and 1000 Multiply decimals by 10,100 and 1000 Divide decimals by 10 , 100 and 1000 <br> Recall quickly multiplication facts up to $10 \times 10$ and use them to multiply pairs of multiples of 10 and 100 The product is 400 . At least one of the numbers is a multiple of 10 . What two numbers could have been multiplied together? Are there any other possibilities? 104781042410421 | Negative numbers Count from any given number in whole-number and decimal steps extending beyond zerowhen counting backwards; relate the numbers to their position on a number line. <br> read, write, order and compare numbers to at least 1000000 and determine the value of each digit <br> Numbers to 10000 <br> Numbers to 100 <br> 000 <br> Compare and order (100 000) <br> Numbers to 1000 000 <br> Compare and order (1000 000) | we all four operations to solve problems ivoviving measure flor <br> money] using decimal notation, including scaling $\qquad$ <br> millimetre; gram and kilogram; litre and millilitre) <br> Kilograms and kilometres Milligrams and millilitres Metric units <br> What is two hundred and seventy-six centimetres to the nearest metre? How many millimetere centimetres? <br> Imperial units <br> This bag of sugar weighs 1 kg . Approximately how many pounds (lb) of sugar would fit into another empty bag of the same size as this one? Tick the correct answer. <br> 201b 14lb 21 lb 4 lb <br> Children should be able to draw a flow chart to help They should convert between $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ and km . between commonly used imperial units and metric units <br> convert between miles and kilometres <br> Miles and kilometres <br> use, read, write and convert between standard <br> units, converting measurements of length, mass, <br> volume and time from a smaller unit of measure to <br> to up to three decimal places <br> Convert metric measures <br> Look at the scale. Estimate the number of <br> centimetres that are equal to $21 / 2$ feet. Estimate the difference in centimetres between 50 cm and 1 foot. solve problems involving converting between units of time <br> Kirsty ran a race in one and half minutes. Mina took ten seconds longer to finish. How many seconds did Mina take? Stefan's watch shows the time five minutes past nine. Stefan's watch is 12 minutes fast. What is the correct time? <br> complete, read and interpret information in tables, <br> Timetab timetables <br> Timetables (2) <br> I can find the information in a table or graph to answer a question. The table shows the cost of coach tickets to different ities. What is the total cost for a return journey to York for one adult and two children? children? | estimate volume - for example, using $1 \mathrm{cm3}$ blocks to build cuboids (including cubes) and capacity (for example, using water) <br> What is volume? <br> Compare volume <br> Estimate volume <br> Estimate capacity <br> Fill various containers with water. Ask children to order them by smallest to largest volume of water. Estimate the volume of water in each container and check by emptying into a measuring jug and checking <br> solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate <br> Metric measures <br> Calculate with metric measures Imperial measures <br> Testing conditions <br> Shape $A$ is a rectangle that is 4 m long <br> \& $3 m$ wide. Shape $B$ is a square with <br> sides 3 m . The rectangles and squares <br> a path which has perimeter between <br> $20 \& 30 \mathrm{~m}$. e.g. <br> Can you draw some other <br> arrangements where the perimeter is <br> between 20 \& 30 m ? <br> Always, sometimes, never? <br> you you cut off a piece of a shape <br> you reduce its area and perimeter. <br> Other possibilities <br> A cuboid is made up of 36 smaller <br> cubes. If the cuboid has the length of <br> two of its sides the same what could <br> the dimensions be? |
|  | 23.4 |  |  |  |  |  |
| 江 |  |  | Spot the mistake $0.088,0.089,1.0$ What comes next? 1.173, 1.183, 1.193 <br> What do you notice? <br> One tenth of $£ 41$, One hundredth of $£ 41$, One thousandth of $£ 41$ Continue the pattern. What do you notice? $0.085+0.015$ $=0.10 .075+0.025=0.10 .065+0.035=0.1$ Continue the pattern for the next five number sentences. <br> True or false? <br> 0.1 of a kilometre is 1 m . 0.2 of 2 kilometres is 2 m . 0.3 of 3 Kilometres is 3 m 0.25 of 3 m is 500 cm . $2 / 5$ of $£ 2$ is 20 p Missing symbol Put the correct symbol < or > in each box <br> Odd one out. collections of 4 fractions? <br> Put in Order Imran put these fractions in order starting with the smallest. Are they in the correct order? Two fifths, three tenths, four twentieths How do you know? Complete the pattern Another and another <br> Write a fraction with a denominator of one hundred which has a value of more than 0.75 ? ... and another, ... and another, ... Ordering put these numbers in the correct order, starting with the largest. Explain your thinking 7/10, 0.73, 7/100, $0.07371 \%$ | True or False? <br> The temperature outside is 5 degrees, the temperature inside is 25 degrees. The difference is 20 degrees. <br> Four less than negative 6 is negative 2 <br> 15 more than -2 is 15 . Explain how you know each statements <br> is true or false. <br> Put these statements in order so that the answers are from smallest to greatest: The difference between -24 and -26 - 26 <br> The even number that is less than -18 but greater than than -18 but greater than -22 The number that is half way between 40 and -50 . <br> The difference between -6 and 7. | calculate and compare the area of squares and rectangles including using standard units, square centimetres ( cm 2 ) and square metres ( m 2 ) and estimate the area of irregular shapes (also included in measuring) <br> Undoing A school play ends at 6.45 pm . The play lasted 2 hours and 35 minutes. What time did it start? |  |

## Maths Curriculum Map - Year 6 (Autumn)




## Maths Curriculum Map - Year 6 (Spring)



|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Links | Teaching for Mastery | Teaching for Mastery Year 6 |  |  | Teaching for Mastery Year 6 |  |  |  |  |  |
|  |  |  |  | come |  |  |  |  |  |  |
| Nrich links | $\qquad$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $\frac{\sum_{11}^{5}}{\mathbf{y y}}$ |  |  |  |  |  |  |  |  |  |  |

## Maths Curriculum Map - Year 6 (Summer)



|  | The Big Ideas <br> Variance and invariance are important ideas in mathematics, particularly in geometry. A set of quadrilaterals for example may vary in many ways in terms of area, length of sides and the size of individual angles. However there are a set of invariant properties which remain common to all quadrilaterals, namely they have four sides and their internal angles su $m$ to 3600 . Some of these properties emerge from naturally occurring constraints, for example the sum of the internal angles will always sum to 360 and they can do nothing else! |  |  |  |  | The Big The que attentio differen they col geomet similar, similar, are simi convent to a con $\qquad$ | the same?' and 'W and invariance. Sh uent and similar. C actly the same spa ut can differ in tically sized ones ar perties are a mix $r n$. That we measu | can draw pupils' <br> ike in essentially two s are alike in all ways: es share identical eral triangles are ot all isosceles triangles ditions and straight line combine as 180 is conventional | The Big Ideas <br> Pie charts visually display relative proportions, for example, that the proportion of pupils at School A liking reading is greater than the proportion at School B. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Links | Teaching for Mastery Year 6 |  |  |  | Teaching for Mastery Year 6 |  |  |  | ching for Mastery Year 6 |
| squounsog osoy әұ14M | recognise, describe and build simple 3-D <br> shapes, including making nets <br> Childre shapes <br> now <br> of rectangles tri <br> nets of 3-D shapes $C$ ties to draw 2-D shapes and identify and draw questions such as <br> 'I am thinking of a 3 shape. It has a square base It has four ther faces which are triangles. What is the name of the 3D shape?' Which of these nets are of square based pyramids? How do you know? illustrate and name parts of circles, including radius, diameter and Circles $\frac{\text { Circles }}{\text { Childre }}$ <br> that: The circumference is the distance round cirircle The radius is the distance from the centre to the <br> circumference The diameter is $2 \times$ radius <br> draw 2-D shapes using given dimensions and angles <br> Measure with a protractor <br> triangle given two sides and the incluad be able to construct a <br> where they meet at a point, are on a straight line, or are vertically <br> opposite, and find missing angles <br> Calculate angles Vertically opposite angles There are nine equal angles around a point angle?' <br> angle is $24^{\circ}$ How <br> geometric shapes based on their properties and sizes and find <br> unknown angles in any triangles, quadrilaterals, and regular <br> polygons <br> $\frac{\text { Angles in a triangle (1) }}{\text { Angles in a triangle (3) }} \quad \frac{\text { Angles in a triangle (2) }}{\text { Angles in }}$ <br> Angles in polygons <br> Children should be able to make and draw shapes with increasing <br> accuracy and knowledge of their properties. They should be able to <br> carry out activities such as <br> Give me instructions to get me to draw a rhombus using my ruler that has three right angles' |  |  |  | describe positions on the full coordinate grid (all <br> four quadrants) <br> The first quadrant <br> Plotting coordinates <br> Children should be able to draw and label rectangles, parallelograms and rhombuses, specified by co-ordinates in the four quadrants, predicting missing co-ordinates using the properties of <br> Shapes The two shaded squares below are the same size. A is the point $(17,8), \mathrm{B}$ is the point ( 7 , <br> 2). What are the co-ordinates of point $C$ <br> draw and translate simple shapes on the <br> coordinate plane, and reflect them in the axes <br> Translation <br> Here is a quadrilateral. Theshape is translated so that point A is now at point B . Complete the shape in its new <br> position. Use a ruler. <br> Draw and translate simple shapes on the coordinate plane, and reflect them in the axes Reflections <br> Children should be able to draw a shape with corners at given vertices, and describe the properties of the shape. Can they create the same shape where all of the coordinates will be positive? Negative? Children should be able to sketch the reflection of a simple shape in two mirror lines at right angles and find the coordinates of selected points. <br> Complete the diagram by reflecting the shape in the mirror line - |  |  | Themed ar | projects, Consolidation Problem Solving |
| Nrich links | 1 | 2 | 3 | 4 |  | 2 |  |  |  |
|  | 5 | 6 | 7 | 8 |  |  |  |  |  |
|  | What's the same, what's different about the nets of a triangular prism and a square based pyramid? Visualising <br> Jess has 24 cubes which she builds to make a cuboid. Write the dimensions of cuboids that she could make. List all the possibilities. <br> Always, sometimes, never <br> Is it always, sometimes or never true that, in a polyhedron, the number of vertices plus the number of faces equals the number of edges? <br> Other possibilities <br> Not to scale The angle at the top of this isosceles triangle is 110 degrees. What are the other angles in the triangle? <br> Convince me <br> One angle at the point where the diagonals of a rectangle meet is 36 degrees. What could the other angles be? |  |  |  |  |  |  | Themed a | projects, Consolidation Problem Solving |

